

Investment in Nuclear Energy

William J. Nuttall Senior Lecturer, Technology Policy University of Cambridge wjn21@cam.ac.uk

WJN copyright notice: These slides have been produced for a single not-for-profit use at BP Conference Madrid, April 2008. These slides are not to be reproduced or circulated in any way including via the internet

0-0-0

Some things change and some things stay the same...

Let us start with the relatively fixed realities of nuclear power

UNIVERSITY OF CAMBRIDGE Capital costs dominate Electricity Policy Research Group

Approximate breakdown of lifetime costs of a nuclear power plant. Capital investment is the most significant factor in the economics of nuclear power. See: Nuclear Energy Agency, Reduction of Capital Costs of Nuclear Power Plants, OECD, Paris (2000)

Fuel and O&M Costs

Electricity Policy Research Group

■uranium □fuel prep ■O&M □provision for spent fuel

Average nuclear plant operating cost breakdowns excluding capital additions, and assuming levelised cost shares at a 10% discount rate. Note typically decommissioning costs are less than 1% of ongoing

ENERGY operating costs

– SECURITY

INITIATIVE Nuclear Power in the OECD, IEA (2001)

Real Construction Costs (Japan) approx. US\$ 2,500/kWe

Table A-5.B.3

OWNER	NAME OF PLANT	CAPACITY	COMMERCIAL OPERATION DATE	TOTAL PROJECT COST (109 YEN)	U.S. EQUIVALENT*
Tohoku Electric Kyusyu Electric	Onagawa 3 (BWR) Genkai 3 (PWR) Genkai 4 (PWR)	825 MWe 1,180 MWe 1,180 MWe	January 2002 March 1994 July 1997	314 399 324	\$2,409/kWe \$2,818/kWe \$2,288/kWe

Note: Compiled from public information by the MIT Center for Energy and Environmental Policy Research.

a: Using PPP of 158 yen / U.S. dollar.

MIT Report, The Future of Nuclear Power (2003)

0-0-0

"The day I hear that Britain is really to build seven large new nuclear power plants is the day I know that cheap British electricity will not return in my lifetime"

Bill Nuttall

The fundamental economic risks of nuclear power are:

- High costs of capital (high discount rates and rates of return)
- Overrun of construction phase (lost time is lost money)
- Future electricity prices (as for any power technology)
- Changes of safety or environmental regulation during planning and construction
- Political risk and public acceptance problems
- Risk of a low carbon price
- Poor plant reliability in operational phase (low load factor)

Data Source: World Nuclear Association

http://www.world-nuclear.org/info/inf41.html#App1

For nuclear power the following factors are relatively minor:

- **Decommissioning costs** (40-60 years in the future)
- Fuel costs (raw U₃0₈ is only a few % of total costs)
- **Geopolitical risks** (fuel is easily stored and is regarded as "domestic" for energy security)

Most of the big risks apply before the plant is generating, shown here in red:

- High costs of capital (high discount rates and rates of return)
- Overrun of construction phase (lost time is lost money)
- Future electricity prices (as for any power technology)
- Changes of safety or environmental regulation during planning and construction
- Political risk and public acceptance problems
- Risk of a low carbon price
- Poor plant reliability in operational phase (low load factor)

This makes existing plant much more attractive than planned plant

UNIVERSITY OF CAMBRIDGE

First signs of the renaissance

Electricity Policy Research Group

- Summer 1999, the 670 MWe Pilgrim plant was sold to **Entergy**, by **Boston Edison**, for \$14 million: **US\$20/kWe**
- March 2000, **Entergy Corporation** reached agreement to buy the New York Power Authority's Indian Point-3 (965 MWe) and Fitzpatrick (778 MWe) nuclear power plants for US\$ 967 of which \$636 million was for the two mid 1970s units: **US\$ 364/kWe**
- In August 2000 **Dominion Resources** agreed to pay US\$ 1.3 billion in cash for the Millstone nuclear plant, about **US\$600/kWe**
- November 2000 **Entergy** purchased ConEd's 939 MWe Indian Point-2 unit (including the shut down unit 1 and 76 MWe of gas turbine capacity). The price was \$502 million: **US\$494/kWe**
- August 2001 **Entergy Corporation** became the successful bidder for the 29-year old Vermont Yankee power station. Entergy paid \$180 million for the 522 MWe plant; **US\$344/kWe**
- April 2002: Sale of 88.2% of Seabrook PWR NPP, New Hampshire USA. Plant operational 1986. Sale price for the plant US\$749M equating to US**\$ 730/kWe**
- November 2003 **Dominion** agreed to pay \$220 million cash for Kewaunee, a 540 MWe Wisconsin reactor, the figure including \$36.5 million for fuel. **US\$339/kWe**
- November 2003, **Constellation Energy** agreed to buy the R E Ginna nuclear power plant for \$401 million. A planned uprate enabled by 1996 steam generator replacement will increase capacity to 580 MWe: **US\$ 691/kWe**
- March 2004 Cameco Corp. agreed to buy 25.2% of the South Texas Project two 1250 MWe PWRs which started up 1988-89 - for \$279 million plus fuel, but two of the owners then exercised right of first refusal, leaving Cameco with a \$7 million consolation fee US\$453/kWe
- July 2006 **Entergy** agreed to buy the 798 MWe Palisades nuclear power plant from CMS subsidiary Consumers Energy for US\$ 242 million: **US\$301/kWe**
- December 2006 **FPL Energy** agreed to buy the Point Beach nuclear plant. The two units total 1012 MWe price \$719 million for the plant: **US\$1407/kWe**

Data Source: World Nuclear Association

ENERGY
SECURITY
INITIATIVE

http://www.world-nuclear.org/info/inf41.html#App1

In the 1990s used NPPs were cheap, then ...

Data Source: World Nuclear Association

http://www.world-nuclear.org/info/inf41.html#App1

Graphs above are based upon directly on WNA tabulated data rather than the related information on the previous slide

In the US in the 1990s:

Oil, gas and coal were inexpensive

There was no hint of a carbon tax

- US liberalising markets were compensating for NPP stranded assets
- US NPP load factors were not yet impressive

Another early sign of the renaissance

2002:

Decision made for Browns Ferry Unit 1 Restart, Alabama USA. The background was:

Boiling Water Reactor operational from 1973 Shutdown by fire for one year in 1975 The fire prompted much general concern about fire safety Extended safety-based shutdown from 1985 But ... after major investment unit restarted 2007.

This story features in the 2003 MIT Report, *The Future of Nuclear Power*, page 140 (appendix to chapter 5)

Electricity Policy Research Group

But what about New Build?

WNA Meta-Study December 2005

Table 3: Studies of comparative costs of new generating plants

	MIT (2003) \$	DGEMP (2003) euros	T&L (2003) euros	RAE (2004) £	UofC (2004) \$	CERI (2004) Can\$		
Capital Cost per kW								
Nudear	2000	1280	1900	1150	1500	2347		
Gas	500	523	600	300	590	711		
Coal	1300	1281	860	820	1 189	1600		
Construction period	- years							
Nudear	5	5	5	5	5	5		
Gas	2	2	2	2	2	2		
Coal	4	3	3	4	4	4		
Cost of capital or Dr	ate %							
Nudear	11.5	8	5	7.5	12.5	8		
Gas	9.6	8	5	7.5	9.5	8		
Coal	9.6	8	5	7.5	9.5	8		
Gas price	3.50/MBTU	3.30/MBTU	3.00/GJ	2.18/GJ	3.39/MBTU	6.47/Mcf		
Electricity price per MWh								
Nudear	67	28	24	23	51	53		
Gas	38	35	32	22	33	72		
Coal	42	34	28	25	35	48		
Electricity price, nucl	ear=100							
Nudear	100	100	100	100	100	100		
Gas	57	125	133	96	65	136		
Coal	63	121	117	109	69	89		

Much diversity of assumptions:

- Capital costs +/- 25%
- Cost of capital 5%-12.5%
- Gas power to nuclear power price ratio: 0.57 1.33

Sources: see Appendix

The New Economics of Nuclear Power, available at: http://www.world-nuclear.org/reference/pdf/economics.pdf

ENERGY

SECURITY

INITIATIVE

CAMBRIDGE

MIT Report Assumptions

Electricity Policy Research Group

Note: Compiled from public information, including reports from the Energy Information Administration.

MIT Report, The Future of Nuclear Power (2003)

Cost & Price Competitive?

Electricity Policy Research Group

Nuclear Power economics with carbon charging

UNIVERSITY OF

CAMBRIDGE

New Build in Britain Europe's most liberalised electricity market

Live Issues in Britain April 2008

- **Sites** (enough to "replace nuclear with nuclear", but interestingly there is *no cap on nuclear*. Several good sites belong to British Energy)
- **Waste** (Has the Committee on Radioactive Waste Management really fixed that problem with its progressive approach?)
- Generic Design Approvals (limited safety regulatory capacity)
- **Financing** (no chance of merchant new build, consortia will be led by large international energy companies with much of the costs on the balance sheet: See S.Taylor's EC-CESSA paper: http://www.cessa.eu.com/sd_papers/wp/wp2/0204_Taylor.pdf)
- **Global Supply Chain** (where will UK NPPs be in the queue?)
- **Nuclear skills** (probably OK, but beware it's a global market for talent, also note Royal Navy-related requirements going forward)
- **Carbon Price & EU-ETS** (UK government ability "to build investor confidence in the existence of a long-term multilateral carbon price signal" See Nuclear White Paper January 2008)
- British Energy (M&A target? Much feverish speculation)

Conclusions & Closing Observations

- Nuclear power Plants can be built in liberalised markets and they will probably yield a decent return for investors.
- A fully liberalised electricity market should not be a 100% natural gas electricity market
- Mature markets will be diverse markets
- Climate change and emissions policies will be key to the future of nuclear power.
- In Britain the debate is shifting from might we replace nuclear with nuclear to might we decarbonise the electricity system. They are very different things.
- Free market economies build much bigger things than nuclear power stations e.g. BAA Heathrow Terminal 5 (Cost roughly GBP 4 billion, 60000 people having worked on the project). NPPs are not even the biggest energy projects on the drawing board.

Acknowledgements

With thanks to: EPRG, CMI and CESSA Dr Simon Taylor (Judge Business School, Cambridge) Dr Fabien Roques (IEA)

All responsibility for errors and omissions rests with the author.

