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FOREWORD
Both editors of this special issue and four of its contributing
authors (all but Schervish and Kadane) were students of
Ernest Nagel. Nagel’s influence on mid-twentieth-century

philosophy in America and the English-speaking world was wide
and deep. He and his contemporary, Carl G. Hempel, the two most
prominent philosophers of science of that epoch, employed the tools
of analytic philosophy combined with a deep knowledge of the
sciences to illumine classical questions in epistemology and the phi-
losophy of science. Writing within the context of a pervasive posi-
tivism, Nagel imbued the discussion with a pragmatic spirit that
both refreshed and inspired. (That spirit is conveyed by the beautiful
quotation from Principles of the Theory of Probability at the beginning
of the article by Seidenfeld, Schervish, and Kadane.) Nagel forged
an approach to many issues in the philosophy of science that
required analytic rigor together with a sophisticated awareness of
the latest developments in the sciences. Each original contribution
to this volume concentrates upon one of the many issues Nagel
addressed—teleology in biology, explanation and theory construc-
tion, reduction, and probability. Nagel was a towering figure, but
he was so in spite of his small stature and his gentle, caring nature.
He was a great teacher, displaying absolute lucidity in his lectures
and a gracious attitude of friendliness and support to his students.
The editors have chosen to introduce our subject through the excel-
lent tribute to the man and his work by one of the contributors,
Patrick Suppes, written in 1994 for the National Academy of Sciences.

bernard berofsky
isaac levi
2012 The Journal of Philosophy, Inc.
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BIOGRAPHICAL MEMOIR

ERNEST NAGEL: NOVEMBER 16, 1901–SEPTEMBER 20, 1985*
Ernest Nagel was born November 16, 1901, in Nové Mesto,
Bohemia (now part of Czechoslovakia) and came to the United
States when he was ten years old. He became a naturalized

U.S. citizen in 1919, and received his higher education entirely in
the United States. In 1923 he received a Bachelor of Science from
the College of the City of New York, in 1925 a Master’s Degree in
philosophy from Columbia University, and in 1931, a Ph.D. in phi-
losophy from Columbia. He spent most of his academic career at
Columbia. He was on the faculty there from 1931 to 1970, with the
exception of the academic year 1966–67 when he accepted a position
at Rockefeller University. From 1967 to 1970 he held the position of
university professor at Columbia, and he continued to be active in
the intellectual affairs of the university after his retirement, including
teaching seminars and courses. Ernest Nagel died in New York City
on September 20, 1985.

After his arrival in New York City in 1911, Nagel spent his entire
life there, although he and his family regularly spent the summer in
Vermont for many years. On January 20, 1935, he married Edith
Alexandria Haggstrom, and they had two sons, Alexander Joseph,
who is a professor of mathematics at the University of Wisconsin-
Madison, and Sidney Robert, who is a professor of physics at the
University of Chicago. His wife Edith died in 1988.

During his long and active academic career Nagel received many
honors including honorary doctorates from a number of institutions.
He was a Guggenheim Fellow in 1934–35 and 1950–51. He was
elected to the American Academy of Arts and Sciences in 1954, and
to the American Philosophical Society in 1962. In 1977 he was elected
to the National Academy of Sciences.

Nagel’s many contributions to the philosophy of science are dis-
cussed below, but what is most important to emphasize about his
more than forty years’ association with Columbia University is the
central role he played in the intellectual life of Columbia, and more
generally, of New York City. To many generations of students he was
*Reprinted with permission from Biographical Memoirs, Volume 65, 1994, by the National
Academy of Sciences, courtesy of the National Academies Press, Washington, D.C.
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biographical memoir 471
the outstanding spokesman of what philosophy could offer in terms
of analysis of the scientific method, as it is practiced in many different
sciences, and in the relation between science and perennial problems
of philosophy such as those of causality and determinism. What is
important about this influence is that it was not simply students of
philosophy, but students of many different disciplines whom he influ-
enced in a way that many of them still remember. He saw his prin-
cipal role as that of a philosophical critic of ill-conceived notions
from whatever quarter they might come. It is this critical spirit of
analysis and reflection that he especially communicated to others.
He was properly skeptical of philosophical edifices built independent
of detailed scientific considerations. But he was equally critical of the
writings of scientists who too blithely thought they could straighten
out their colleagues on fundamental philosophical questions without
proper knowledge of the many issues involved.

His own intellectual mentors were Morris R. Cohen, with whom he
wrote the most influential textbook in logic and scientific method
published in the period between the mid-1930s and the mid-1950s,
and John Dewey, who taught at Columbia for many years and was
one of the most important American philosophers in the first half
of the twentieth century. Throughout his career Nagel tried to com-
bine the best elements of Cohen’s philosophical realism and Dewey’s
radical instrumentalism.

His closest colleague, personally and philosophically, was probably
Sidney Hook, who also taught in New York City for many years,
primarily at New York University. Like Dewey and Hook, Nagel also
enjoyed the wider arena of intellectual and political life in New York.
He wrote extensively for such publications as Partisan Review and The
Nation, as well as for the standard scholarly journals. With these many
different interests and engagements he occupied a position, espe-
cially in the intellectual life of New York City, that extended far
beyond the boundaries of academic philosophy. Within the univer-
sity Nagel interacted with colleagues in the sciences in a way that
was unusual then, and is unusual now, for philosophers. For exam-
ple, he gave for many years a famous seminar with Paul Lazarfeld
on the methodology of the social sciences, which was widely attended
by social scientists as well as philosophers at Columbia. His interest
in current research in physics continued well into retirement. It is
not common practice for philosophers to be elected to the National
Academy of Sciences, and there is no special section to which they
naturally belong. His election was a tribute to Ernest Nagel’s wide-
ranging interests and extensive substantive knowledge of many dif-
ferent branches of science. It is fair to say that the range of his
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scientific interests and knowledge exceeded that of any other phi-
losopher of science of his generation in the United States.

a survey of nagel’s wide-ranging interests

Nagel wrote about too many different parts of science to survey in
detail all that he had to say. What I do want to do, however, is to
give a sense of the wide range of his interests and the continual
concern for foundational issues discussed from the critical stand-
point he thought essential for a philosopher.

Causality, Explanations, and Laws. The general topic of causality,
and also the nature of scientific explanations and laws, are topics to
which Nagel returned again and again in his career. His most exten-
sive discussion is to be found in his magisterial book, The Structure of
Science, which has as its subtitle Problems in the Logic of Scientific Expla-
nation. Here he devoted a chapter to patterns of scientific explanation
with an analysis of four kinds of explanation offered in science: the
deductive model, the probabilistic model, the functional or ideo-
logical model, and the genetic model, where by “genetic” is meant
the study of the historical roots of phenomena. Although he gave
a very sympathetic exposition on various occasions of teleological
explanations in biology, he favored the classical deductive model as
providing the best examples of scientific explanation. However, he
also recognized the problems of characterizing what a nontrivial
deductive pattern of explanation must be and in various publications
went to some length to analyze the various puzzles surrounding this
notion. It would probably be generally conceded that the intuitive
notion of a nontrivial deductive explanation is still not thoroughly
analyzed, and is possibly not a notion that we shall ever put on a
completely formal basis. Nagel was also concerned with the logical
character of scientific laws. Many of the same puzzles that beset
explanations beset characterizing the nontriviality of laws. He was
equally concerned to distinguish purely experimental laws from
theoretical laws. He had many wise things to say on all of these
problems of explanation, laws, and theories without proposing or
even believing in some grand general scheme that would satis-
factorily account for all the puzzles that have been raised about
these concepts. As I have already emphasized, what is important
about Nagel’s role as a critic of science and philosophy is that he
did not focus only on general issues about causality and explanation,
but went on to the detailed analysis of these concepts and their use
in individual scientific disciplines.

Foundations of Measurement. In his dissertation completed in 1931
and throughout his academic career, Nagel had continuing interest
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in the theory of measurement. More than any other philosopher of
his generation he built on the nineteenth-century work of Helmholtz
and Hölder, as well as the earlier-twentieth-century work of the British
physicist Norman Campbell. It was characteristic of Nagel’s approach
that he did not extend the formal results obtained earlier by Hölder
and others, but critically examined the conceptual assumptions back
of the formal developments.

Foundations of Geometry. Already in his dissertation he exhibited his
deep interest in the history of nineteenth-century geometry. He con-
tinued this interest in a number of publications; one of his most
well-known pieces of work is a detailed examination of the develop-
ment of the conception of systems of geometry as abstract mathe-
matical structures in the nineteenth century. The central role that
geometry played in the development of the abstract form of modern
mathematics has often not been appreciated sufficiently in discus-
sions of the foundations of mathematics by mathematicians and phi-
losophers. The development of projective geometry by Monge,
Poncelet, Gergonne, Von Staudt, and others, as well as the abstract
theory of Grassman’s Ausdehnungslehre and related work, formed the
background for the rapid development of the modern axiomatic
view of geometry developed by Pasch, Hilbert, and Klein in the last
decades of the nineteenth century. Nagel’s long essay, published in
1939, was one of the first historical analyses to recognize the great
importance of the break that was made by the introduction of pro-
jective geometry for later views on the foundations of mathematics.
What was essential was the new understanding that pure geometry is
neither the science of quantity nor the science of extension in the
sense so thoroughly developed by Euclid.

Years later, Nagel took up again his interest in geometry, in the
chapter devoted to space and geometry and in another chapter to
geometry and physics, in The Structure of Science. He analyzed with
care the foundational discussions of the differences between pure
and applied geometry and the nature of conventions in geometry,
with particular reference to the much earlier discussions by Poincaré
and Einstein. Nagel presented persuasive arguments why Poincaré
was wrong in his judgment that Euclidean geometry would never
be abandoned.

Foundations of Physics. As already indicated, Nagel devoted a sub-
stantial part of his critical energy to the fundamental philosophical
issues raised by the development of relativity theory and quantum
mechanics during the period spanned by his academic career. His
concern to give a detailed philosophical critique of the relation
between geometry and physics was just mentioned. The issues raised



the journal of philosophy474
by quantum mechanics were of equal importance to him. In various
publications he was concerned to distinguish the sense in which
quantum mechanics preserves causality as reflected in the deter-
ministic solutions of the Schroedinger equation for given initial con-
ditions, and at the same time to analyze the many different senses
in which quantum phenomena could be said to be indeterministic.
He was very much aware of the fact that there is no single sense of
indeterminism that is agreed upon as the central one, and also that
different senses of indeterminism depend upon different senses of
the concept of probability. Here is a characteristic passage from
Nagel’s writings on the matter: “In the voluminous literature on
the ‘indeterminism’ of microphysics, one point stands out clearly:
whatever the issue may be, it is generated by the theoretical inter-
pretations that are placed on the acknowledged data rather than
by any disagreement as to what those data are.”

Another classic paper of Nagel’s is concerned with the detailed
analysis of the reduction of theories, with special emphasis on the
reduction of thermodynamics to statistical mechanics. This is a sub-
ject that has received much attention from applied mathematicians
and theoretical physicists in the last half century. Nagel does not
add to the technical results on the complex problem of giving clear
mathematical results concerning under what conditions a represen-
tation theorem can be proved, but he does provide the most exten-
sive conceptual analysis to be found over a long period in the
literature of the philosophy of science on this important case of
reduction. More generally, his analysis of the reduction of theories
in a chapter of The Structure of Science is a classical presentation of
philosophical views on reductionism.

Foundations of Probability. Throughout the twentieth century
there was extended conceptual controversy over the nature of
probability. The terrain of the conflict has not been restricted
to any one domain of science, although physics has been central
to much of the discussion, but equally important has been the
Bayesian view that the most important sense of probability is the
subjective one of degree of belief, advocated most persuasively
by Bruno de Finetti and L. J. Savage. Most of Nagel’s writings
on the foundations of probability appeared before Savage’s
1954 book, The Foundations of Statistics. Although Nagel vigorously
defended the frequency interpretation of probability, he was care-
ful to survey the various logical problems that have been raised
about the frequency interpretation, including well-known objec-
tions to Von Mises’s concept of a collective. He was also among
the first in the philosophical literature to call attention to the
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important method of arbitrary functions in probability theory, devel-
oped to provide an account of physical mechanisms in coin flipping
and other such physical devices for producing symmetric probability
distributions. He acknowledged especially the important work
of Poincaré, carried on later by G. D. Birkhoff, E. Hopf, and others,
providing a detailed account of the ordinary physical mechanisms
by which symmetric probabilities are produced in games of chance
such as roulette, craps, and so on.

Theories of Induction. Much more of Nagel’s intellectual energy was
devoted to critical analyses of theories of induction put forth, espe-
cially by the philosophers Hans Reichenbach and Rudolf Carnap,
who made proposals sufficiently detailed to also attract the attention
of statisticians interested in the foundations of statistical inference.

Although agreeing with Reichenbach that the relative frequency
interpretation of probability is the fundamental one, Nagel on
numerous occasions criticized Reichenbach’s wholesale attempts
to extend the relative frequency theory to give an account of the
quantitative degree of confirmation of a scientific theory. Nagel
rightly believed that Reichenbach’s efforts in this direction were
too crude and general to provide a serviceable methodology for
evaluating the probability of a theory. Nagel’s characteristic skep-
ticism of philosophers who propose simple and general theories
for complex matters comes through again and again in his criti-
cisms of Reichenbach’s ideas. It is fair to say that Reichenbach’s
analysis no longer has serious currency. Nagel’s published criticisms
were one of the most effective lines of attack against Reichenbach’s
far too sweeping proposals.

Nagel criticized in a similar fashion Reichenbach’s unorthodox
and equally sweeping proposals for the interpretation of quantum
mechanics. For example, Reichenbach proposed a three-valued logic
of true, false, and indeterminate, but did not provide anything like
the proper intuitive and technical development of this logic. Nagel’s
criticisms were characteristically sharp and pointed.

With equal claim to generality but with a completely different
interpretation of probability, namely what is usually termed a logical
theory of probability, Rudolf Carnap proposed a general approach
to the theory of confirmation of scientific theories. Nagel managed
to find as many intuitive difficulties with Carnap’s theory as with
Reichenbach’s. What is important to record here is not the techni-
cal criticisms of Carnap or Reichenbach, but rather the general
perspective from which he conducted these critical investigations.
He clearly felt that the effort to have a general methodology for
quantitative confirmation of scientific theories, taken as wholes,
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was an unworkable and unfeasible idea. Drawing upon his own
wide scientific knowledge he offered numerous counter-examples
to Carnap’s ideas. Nagel was equally critical of the fact that Carnap
based his theory of induction on assuming that we were able to char-
acterize a set of independent and complete primitive predicates
for describing experience. Nagel puts his criticism this way: “it is
difficult to avoid the conclusion that the assumption that we have,
or some day shall have, a complete set of primitive predicates is
thoroughly unrealistic, and that in consequence an inductive logic
based on that assumption is a form of science fiction.”

Scientific Explanation in Biology. Over a period of many years, Nagel
published a number of articles on the character of scientific explana-
tions in biology. He included in The Structure of Science a chapter
on mechanistic explanation and organismic biology, and in the John
Dewey lectures, given at Columbia University in 1977, he gave perhaps
his most thorough analysis of the concept of teleology in biology.
Nagel’s Dewey lectures provided a reformulation and reexamination
of his earlier writings on teleological explanation. The written ver-
sion of the lectures is divided into two parts. In the first part Nagel
examined three alternative accounts of the notion of goal and goal-
directed processes. The first is the intentional account, which is
modeled on purposive human behavior, and, rightly enough, Nagel
finds difficulties with this view in talk about goal-directed processes
in lower organisms such as protozoa and plants. The second account
is the computer-program view of such processes; genetic coding is a
striking and appealing example, but Nagel points out that the con-
cept of goal-directedness is one that we attribute to behavior without
having the possibility of examining any proposed internal computer
program that controls it.

The third account of goal-directed behavior Nagel refers to as
the “system-property” view of goal-directed processes. An example
that illustrates this view is the collection of mechanisms that act
homeostatically to maintain the water content of the blood at about
ninety percent. Nagel imposes the reasonable requirements that the
process be plastic, that it be persistent, and that the relevant variables
controlling it be for the normal range of their values independent.
It should be obvious that there is no inconsistency between the
computer-program view and the system view, but it is the system
view that he uses for the definition of goal-directed behavior, for
the reason already indicated. Nagel also deals with several objec-
tions to the system view which I shall not examine here. The impor-
tant point is that once the system-property view is accepted, then a
general analysis of the concept of being goal-directed can be given
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without using specifically biological notions or other expressions that
have a teleological connotation. By giving an analysis of goal-directed
processes in this fashion, Nagel wanted to make the important point
that explanations of goal-directed processes in biology are, in prin-
ciple, similar in structure to explanations of nonbiological processes
in the physical sciences.

The second part of the essay is devoted to functional explanations
in biology, the second main type of teleological explanation. Nagel
says that a typical example of a functional explanation is the asser-
tion, “fish have gills in order to obtain oxygen.” The basic form of
functional explanations for Nagel is this: “During a given period t
and in environment E, the function of item i in system S is to enable
the system to do F.” An example would be green plants being pro-
vided during a period of time, water, carbon dioxide, and sunlight,
with the function of chlorophyll then being to enable the plants to
perform photosynthesis. As Nagel notes, such functional explana-
tions are not causal, in contrast to explanations of goal ascriptions.
In the process of setting forth his own views, Nagel examines Carl
Hempel’s well-known critique of functional explanations and defends
a proper formulation of their use in biology.

Methodology of the Social Sciences. Nagel’s general thesis about the
social sciences is that they are subject to the same general canons of
scientific method applicable in the natural sciences. He was par-
ticularly concerned to argue on numerous occasions that subjective
explanations of human behavior either individually or in groups—
an approach that has a long history of proponents—does not satisfy
the usual standards for scientific inquiry and can be avoided. He
dealt in the same way with the claims that investigations in the social
sciences are subject to a peculiar form of value-oriented bias. In
various publications Nagel was also concerned to offer a detailed
analysis of the nature of statistical explanations in the social sciences,
especially emphasizing their importance for causal analysis. Finally,
I would not want to omit the fact that he devoted the last chapter
of The Stucture of Science to problems in the logic of historical inquiry.
He provided in this final chapter a particularly careful and detailed
analysis of three important problems: the problem presented by the
selective character of historical inquiry for the achievement of his-
torical objectivity; the scientific justification for assigning relative
importance to causal factors, as for example, the relative weight of
economic as opposed to political factors as causes of the American
Civil War; and finally, the possibility of using effectively in history
contrary-to-fact judgments about the past, in order to evaluate the
nature of various historical events.
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final note

I have surveyed in a necessarily superficial way Ernest Nagel’s many
philosophical and scientific interests. What is equally important is to
emphasize the unity of his vision of the nature of scientific inquiry
and the critical role that philosophy of science can have in rooting
out mistaken conceptions and ill-thought-out claims of significance.
Because of the emphasis he placed on criticism, it is not possible in
any simple way to summarize the unity of Ernest Nagel’s intellectual
vision. However, an easily identified style and manner of thought
come through in his writings in any of the areas I have surveyed.
The same patient critical tone permeated his seminars as well as his
written work. As legions of students will attest, a seminar or course
with Ernest Nagel was a memorable experience, perhaps above all
because his persistent criticisms were tempered by a rare gentleness
of personality and spirit.

patrick suppes
Stanford University
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THE EXPLANATION OF LAWS: SOME
UNFINISHED BUSINESS

Even if we were sure that all possible laws had been found and that
all the external world of nature had been completely ordered,
there would still remain much to be done. We should want to explain
the laws.1
Norman Campbell rightly set the task. It is the business
of science not only to discover laws, but to explain them.
And he added his voice to a philosophical tradition

going back to Aristotle, of taking on the task of explaining what
laws are, and explaining as well what explanations of laws are.
Ever since the publication of the seminal paper of Hempel and
Oppenheim on scientific explanation,2 philosophers have been
inspired to do better on the subject. But it became painfully clear,
from the counter-example Hempel and Oppenheim offered in their
paper, that their account of scientific explanation could not cover
the explanation of laws. Although this is the business of philosophers,
it is still unfinished business.

i. the campbellian background

Ernest Nagel and Richard Bevan Braithwaite were well aware of
Campbell’s views on the structure of theories, and referred to them
when they addressed the issue of the explanation of laws directly.
Both had, as we shall see, very different accounts of laws, and
their explanations. Braithwaite (1953) developed a view that can
be traced back to J. S. Mill and F. P. Ramsey (a view which Ramsey
later rejected) that was a very different variation of the Mill-Ramsey
view that David Lewis developed some two decades later (1973).
Nagel developed a novel view that is an interesting combination
of the views of Norman Campbell and David Hilbert. Sad to
say, however, neither of these remarkable accounts got the timely
critical attention that they deserved. Our present task, our unfin-
ished business is to revisit them, and perhaps generate new interest
in them.
1 Norman Campbell,What Is Science? (London, UK: Methuen and Co. Ltd., 1921), p. 77.
2 Carl G. Hempel and Paul Oppenheim, “Studies in the Logic of Explanation,”

Philosophy of Science, xv, 2 (April 1948): 135–75.

0022-362X/12/0908-09/479–502 ã 2012 The Journal of Philosophy, Inc.
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ii. deductive systems and their laws

In a very laudatory review of Richard Braithwaite’s Scientific Expla-
nation,3 Ernest Nagel raised an objection to Braithwaite’s account of
scientific laws which is worth quoting in full:

Braithwaite’s explicit formulations of the structure of explanatory
systems…do not always make entirely clear whether he thinks that
the deduction of an empirical generalization from some established
higher-level hypothesis is sufficient to constitute an explanation for
the generalization….In any event, it is doubtful whether most physi-
cists would accept as an “explanation” of, say, Galileo’s law for freely-
falling bodies (d 5 gt2/2) the derivation of this law from the logically
equivalent hypothesis that t 5 Ö(2d/g). Deducibility from higher-level
hypotheses is at best only a necessary condition for explanation, not
a sufficient one. The explanatory hypotheses in most of the actual
scientific systems are required to meet other conditions as well: posses-
sing a greater “generality” (not to be identified with greater deductive
power) than the lower-level hypotheses4.…It would improve his exposi-
tion, nevertheless, had he discussed them systematically and so guarded
himself against the possible misconception that the sole task in the
quest for scientific explanations is the relatively easy one of constructing
a deductive system in which empirical generalizations are theorems.5

The example of two logically equivalent versions of Galileo’s law of
freely falling bodies is beside the point. In the kind of scientific deduc-
tive system that Braithwaite considered (something we shall try to
explain below), it would not be acceptable to have an hypothesis be
a higher-order hypothesis, and its logical equivalent be a lower-order
hypothesis in the same deductive system. Nevertheless Ernest’s point
is a good one. It does seem that typical examples of an explanation of
laws involve a least a premise of greater generality.

The second admonition by Ernest is that there is the impression—
to be guarded against—that explanation of laws amounts to showing
them to be theorems in a deductive system. Ernest thought that
providing explanations, on that count, would be a relatively easy
task. However Braithwaite’s proposal for distinguishing the laws of a
well-established deductive system is simply this:

The condition for an established hypothesis h being lawlike (i.e., if true, a
natural law) will then be that the hypothesis either occurs in an established
3 Richard Braithwaite, Scientific Explanation: A Study of the Function of Theory, Probability,
and Law in Science (Cambridge, UK: University Press, 1953). All page references for
Braithwaite in the main text are to this book.

4We omit the other features Nagel mentioned since they concern analogy and evi-
dential requirements that are not directly relevant to the issues under discussion.

5 Ernest Nagel, “A Budget of Problems in the Philosophy of Science,” Philosophical
Review, lxvi, 2 (April 1957): 205–25, at p. 206.



explanation 481
scientific deductive system as a higher-level hypothesis containing theo-
retical concepts or that it occurs in an established scientific deductive
system as a deduction from higher-level hypotheses which are supported
by empirical evidence which is not direct evidence for h itself. (301–02)

It is not so evident that such established deductive systems are rela-
tively easy to come by. At any rate, in this passage and others, it is
clear that Braithwaite proposed conditions for something to be a
law. Braithwaite’s conditions for something to be an explanation of
a law are another matter entirely. Ernest however took these con-
ditions to be a very different proposal: one for something to be an
explanation of a law, rather than a proposal for what counts as a law.

As I understand Braithwaite’s project, the idea is to single out those
generalities of an established deductive system which are its laws.
His proposal could be stated this way:

Let S be some generalization of some established deductive system D.
Then S is a law of D if and only if there is some generalization S* of
D which implies S (but not conversely).6

The place of a generalization in a deductive system is the key ingre-
dient in sorting out the laws from the other generalizations of the
system. Braithwaite’s reliance on the place that a generalization has
in a deductive system is an unusual requirement. The usual accounts
of laws usually make no reference to position in a structured body of
statements. For example, there is the requirement that laws are those
contingent generalizations that are not accidental. There is also the
claim that laws are those generalizations that support their corre-
sponding counterfactuals. Then too, there is the account according
to which laws are those contingent generalizations that are physi-
cally necessary. None of the notions of “accidental generalization,”
“counterfactual conditional,” or of “physical necessity” appeal to some
structured body of statements.7
6We have added the parenthetical condition to avoid the consequence that every
generalization of an established deductive system would be a law. It still does not blunt
the possible case where a deductively strongest generalization of a deductive system
might not be a law of that system. This is a consequence which Braithwaite called to
attention, and for which he developed an answer. It should also be noted that
although such a highest generalization might not count as a law of a system D, it might
very well be a law of an established deductive system that was an extension of D. His
additional requirement that a highest-order hypothesis in a deductive system that has
an occurrence of a theoretical term is a law seems very ad hoc to me. Nevertheless
there are several important plausible cases when this is so—in systems in which the
highest-order hypotheses are the three laws of Newtonian mechanics, Newton’s theory
of gravitation, Schrödinger’s formulation of quantum mechanics, and the basic (three
or four) laws of classical thermodynamics.

7 I am not endorsing any of these accounts. In fact there are fairly convincing exam-
ples of accidental generalizations that also support their corresponding counterfactual
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The explanation of laws is another closely related matter which we
will examine in more detail later in this essay. We shall simply for
the present call attention to two seminal paragraphs that capture
Braithwaite’s views on explanations of laws.

(1) To explain a law, as we have seen, is to incorporate it in an established
deductive system in which it is deducible from higher-level laws.
To explain these higher-level laws is similarly to incorporate them
and the deductive system in which they serve as premises, in an estab-
lished system which is more comprehensive and in which these laws
appear as conclusions. To explain the still-higher-level laws will
require their deduction from laws at a still higher level in a still
more comprehensive system. (347)

(2) Any incorporation of a fact—be it a particular instance of a law
or the law itself—into a deductive system in which it appears as
a conclusion from other known laws is, by virtue of that incor-
poration, an explanation of that fact or law.…what matters is
that we know more than we did before of the connectedness
of the fact or law with more fundamental laws covering a wider
range. (349)

It is however certainly true, as Nagel noted, that an explicit account
of one law’s being more general or more fundamental or having
wider range is patently missing from this account of the explanation
of laws. This we shall try to rectify by a slight addition.

Braithwaite’s account of the explanation of laws in (1) and (2) relies
upon the use of established deductive systems and is very different
from his account of laws. We turn then to his account of laws, and
subsequently to his account of their explanation, after some remarks
about his notion of a deductive system.

iii. deductive systems and theories

It is not at all obvious what Braithwaite meant by “deductive
system.” Although influenced by Campbell’s account of theories,
which we shall describe more fully below, deductive systems are
not theories in Campbell’s sense. Here is Braithwaite’s simpli-
fied example—a “Gallilean” deductive system, based roughly on
Galileo’s law of falling bodies (13). Informally the statements in
the system are arranged in levels with those on the higher levels
conditionals. Even worse, we think that it can be shown that if a law implies its corre-
sponding counterfactual conditional, then it is equivalent to that counterfactual.
In that case there are examples of laws which scientific practice regards as logically
equivalent, while their corresponding counterfactuals are not equivalent.
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implying (but not being implied by) those on the lower. The idea
was that

The hypotheses in this deductive system are empirical general proposi-
tions with diminishing generality. (13)

The system he had in mind is illustrated by the following statements
in descending order of generality:

(I) Every body near the Earth freely falling towards the Earth falls
with an acceleration of 32 feet per second per second.

(II) Every body starting from rest and freely falling towards the Earth
falls 16t 2 feet in t seconds, whatever number t may be.

(IIIa) Every body starting from rest and freely falling for 1 second
towards the Earth falls a distance of 16 feet. (And so on for other
values of t).

It is obvious from this example that a deductive system cannot be iden-
tified with a set of axioms from which all the other statements in it
follow (the elements in (IIIa) are not axioms of the system), nor is it
the set of all logical consequences of a set of axioms (logical truths are
not in it). So deductive systems are neither a theory in the sense of a
set of axioms like the axioms for Euclidean geometry, nor are they
a theory in the sense of Tarski (the set of logical consequences of
some set of sentences).

Probably one way to represent Braithwaite’s deductive systems
would be as a lattice (not Boolean, since that would restrict systems
to those having exactly one higher-order hypothesis). That would
allow one to place hypotheses of various generality at various nodes
with arrows indicating a type of implication.

A more formal description of these deductive systems is not a
serious problem. Here is one suggestion: what is needed is a notion
of a structure that contains more than the listed axioms of a theory
in the first sense of “theory” we discussed, and less than the full
Tarskian theory. Define a Braithwaitean deductive system D* as
any set of statements which satisfies the following conditions, where
S and S* are any contingent hypotheses (generalizations):

(1) D* contains all the axioms of some theory T ;8

(2) If S logically implies S* (S Þ S*), then if S is in D*, so too is S *;
(3) If S is in D*, and I is an instance of S, then I is in D*;
8We believe that here Braithwaite would have used something close to Campbell’s
notions of the hypothesis and the dictionary of a theory. Those notions will be discussed
more fully below.
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where (2) is a kind of closure condition restricted to contingent gen-
eralizations. It is clear however that although the structure of the
system involves deductions, it also involves levels of generality, and
an account of “is more general than” is missing. We shall see below
that it is Nagel, and I believe only Nagel, who has offered an explicit
account—actually two—of “is more general than,” one more general
than the other (no pun intended).

It is clear that both Braithwaite and Nagel thought that some-
thing like greater generality has to figure in the explanation of laws.
The requirement as Nagel expressed it is that for the explanation of
laws, at least one of the premises has to be more general than what
is explained. Of course the requirement does not seem to be needed
for explanations of singular facts. Neither does it figure in those
explanations of events that consist in locating them in a causal
network. The fact that some notion of generality figures in explana-
tions of laws but not in other kinds of explanations is worth worrying
about—only not here.9

As we noted above, the account of laws that situates them in deduc-
tive systems is unusual. This use of deductive systems has an inter-
esting history, and before we turn to Braithwaite’s account of the
explanation of laws, it is important to consider the problem that
Braithwaite attempted to solve with this account.

iv. the mill-ramsey-braithwaite account of laws (mrb)

The story of the origin of the Mill-Ramsey-Lewis (MRL) account
of laws begins with some remarks of the Cambridge philosopher
W. E. Johnson about two kinds of conditionals—universals of fact,
and universals of law. That prompted a sharp reply by another
Cambridge philosopher, F. P. Ramsey. Ramsey then entertained an
account that essentially had been proposed earlier by J. S. Mill—the
Mill-Ramsey account (MR). Soon thereafter, Ramsey (and, I am fairly
sure, Braithwaite) rejected (MR). Braithwaite then developed a better
version of it. Some two decades after that, David Lewis developed a
different nonepistemic version (MRB) of the discarded Mill-Ramsey
account. It is the remarkable but neglected Braithwaite account that
we will now describe.

Ramsey’s sharp reaction to Johnson’s distinction between two kinds
of conditionals was that it was impossible. Johnson thought that
universals of fact were universal quantifications over all things that
in fact satisfied a conditional, whereas with universals of law, the
9 I suspect that part of the reason is that “is more general than” was sometimes used
interchangeably with “is more comprehensive than” and with “is more fundamental than.”



explanation 485
quantifier ranged over all possible things that satisfied a conditional.
Ramsey (unpublished note) remarked that Johnson got the quantifiers
wrong and failed to realize that “everything” means everything. Ramsey
then considered an account of laws that J. S. Mill had advocated:

…What are laws of nature? May be stated thus: What are the fewest
and simplest assumptions, which being granted, the whole existing
order of nature would result? Another mode of stating the question
would be this: What are the fewest general propositions from which all the
uniformities which exist in the universe might be deductively inferred?10

Ramsey’s compact expression of that view was simply that

Laws are consequences of those propositions which we should take as
axioms if we knew everything and organized it as simply as possible in
a deductive system.11

However Ramsey (and I am fairly sure Braithwaite) rejected it on
the epistemic grounds that it is impossible to know everything and to
organize it in a deductive system.

The Millean proposal then was developed in at least three different
ways. Ramsey went on to consider laws as variable hypotheticals—a
device which is not even propositional. I shall say no more about this
possibility. Another better-known response is due to David Lewis,
who expunged the epistemological element from Ramsey’s formula-
tion, replaced the deductive system of the totality of everything
known by another deductive system, and accounted for laws this way:

…a contingent generalization is a law of nature if and only if it appears
as a theorem (or axiom) in each of the deductive systems that achieves
a best combination of simplicity and strength.12

With this variation on the Mill-Ramsey theme we have one of the
most durable and plausible Humean accounts of law in contempo-
rary philosophy of science—(MRL).

With the Mill-Ramsey version (MR), we had a deductive system,
some of whose propositions were known to be in it, but certainly not
all. With Lewis’s variation, we have an appeal to a deductive system
for which it is not a sure thing that one’s favorite generalizations will
10 John Stewart Mill, A System of Logic, Ratiocinative and Inductive (New York: Harper
and Bros., 1858), p. 230.

11 F. P. Ramsey, Philosophical Papers, ed. D. H. Mellor (New York: Cambridge, 1990),
p. 150.

12 David K. Lewis, Counterfactuals (Cambridge: Harvard, 1973), p. 73. A more
nuanced version can be found in his “Humean Supervenience Debugged,” Mind, ciii,
412 (October 1994): 473–90.
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be included in it. That is, of all the true deductive systems that are
possible, the laws will be members of the one which is the best com-
bination of simplicity and informativeness. Even if it were settled
how simplicity and informativeness were to be construed, it is less than
satisfying if the answer to the question “Is P a law?” for any true gen-
eralization P, is: “I don’t know,” “I’m not sure,” or “It’s anyone’s best
guess.” The epistemic reservations raised by Ramsey remain in force.

Braithwaite’s proposal (MRB) differs significantly from Lewis’s later
variation. Lewis expunged the epistemic drawback of the Mill-Ramsey
proposal. Braithwaite’s idea was to meet, in one fell swoop, the two
objections of Ramsey to the Mill-Ramsey account (that it is impos-
sible to know everything and to organize it in a deductive system)
by using epistemically more modest candidates. Instead of one axi-
omatization of all knowledge, he proposed to use instead established
deductive systems organized around specific Campbellian theories.13

v. deductive systems and the explanation of laws

If we turn to the first of the two paragraphs in which Braithwaite
explicitly described the condition for an explanation of a law, we
find an intricate use of deductive systems and their proper exten-
sions. That paragraph, (1), can be described as a compact condition
on explanations this way:

(E) Let A be a law in the deductive system D. A is explained by L if
and only if L is a law in some deductive system D* that is a proper
extension of D, and L implies, but is not equivalent to, A.

Basically the idea is that you cannot explain a law in a deductive
system by restricting yourself to the members of that system. You
have to use a law (or laws) in a proper extension from which it fol-
lows. One of the best examples of explanation (one of several) for
him was the explanation of an approximate formulation of Newton’s
law of gravitation by Einstein’s general theory of relativity.

In the second paragraph, (2), he speaks of the explanation of a law
as the incorporation of it into a deductive system. We take him
to mean that it is a case of the incorporation (we prefer to say “the
embedding”) of one entire deductive system within another, where
the explaining law is not a member of the embedded system. Braithwaite
thought that the larger system had greater predictive power. To
that extent he probably thought of the larger system as more
13 One interesting difference between (MR) and (MRL) on the one hand, and
(MRB) on the other, is that all the statements of the first two kinds of deductive sys-
tems are true, but the statements of (MRB) only need to be established.
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comprehensive. However that systemic consideration does not lead,
as far as I can see, to any notion of one law being more general than
another. Nagel’s condition that any explanation of a law requires the
use of some more general law is not vindicated on the Braithwaite
account. Nevertheless that account has some significant features
that we can only mention at present:

(1) It does not fall victim to the Hempel-Oppenheim counter-example
to their own Deductive-Nomological Model, when applied to laws.
That model would require that the conjunction of Kepler’s laws
of planetary motion and Boyle’s law of gases explains Kepler’s
laws. It can be shown that that absurd example is not permitted
according to Braithwaite’s proposal.

With Braithwaite-style deductive systems in place, there are some
very nice consequences which should be noted:

(2) (LL) If L is a law of a deductive system D, and A is a contingent gen-
eralization that is logically implied by L, then A is also a law of D.

Thus, contingent generalizations which follow from laws of D are
also laws of D.14 So “It is a law of a deductive system that…” dis-
tributes over implication. There are also some nice formal proper-
ties of explanation:

(3) (EL) If A is a contingent generalization that is explained in some
deductive system D then A is also a law of D.

So, if you think that laws are important, then explanations are one
way of assuring that explained generalizations will also be laws. Lastly,
there is a consequence, similar to (LL), for explanations of laws.

(4) (EE) If A is a contingent generalization of the deductive system D
that is explained in the deductive system D*, and A* is a contingent
generalization implied by A, then A* is also explained in D*.

The Braithwaite variation on the Mill-Ramsey proposal has not
been recognized for what it is—a Humean account of laws and their
explanations, that exploits the relation that laws have to established
deductive systems that contain them, and connects the explanation
of laws to the embedding of established deductive systems within
more comprehensive ones. The connection with scientific practice
is evident, and the formal features it supports we believe heightens
its interest. We believe that it is a step in the right direction, and
14 The more general result also holds: If L* is a generalization that follows from
several laws of D, then it too is a law of D.
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find it disappointing that it has not been given the serious scrutiny
that it evidently deserves.

vi. ernest nagel’s theory; campbellian origins

Ernest’s account of the explanation of laws is deeply indebted to
Campbell, especially for the novel way in which the Campbellian
representation of theories is deployed to yield a radical account of
the explanation of laws. It too has been neglected, perhaps because
it was mistakenly viewed as something already familiar from the pub-
lished works of Hempel and others—the so-called “received view.”
Nothing could be further off the mark.

Nagel thought that all explanations of laws were deductive (33).15

Drawing upon a detailed example of an explanation of the law that
ice floats on water, here is his compact description of at least three
conditions that would hold for any explanation of laws (including
statistical ones):

…all the premises are universal statements; there is more than one
premise, each of which is essential in the derivation of the explicandum;
and the premises taken singly or conjointly, do not follow logically
from the explicandum. (34)

Two caveats: We will not be concerned with Nagel’s discussion of the
explanation of statistical laws.16 We will also separate the cases when
the explanation of a law involves only “empirical” laws as premises
(they contain no occurrences of theoretical terms), from those in
which at least one “theoretical” assumption is used.17 Nagel assumed
that it made no difference—though, as we shall explain below, we
think it does.

With some important differences, Nagel adopted Campbell’s
canonical representation of theories as given by two mutually exclu-
sive sets of statements. The first, the hypothesis of the theory, contains
those statements of the theory whose only occurrences of nonlogical
terms are theoretical. The second, the dictionary of the theory, con-
tains those statements that have occurrences of both theoretical and
15 All subsequent page references in the main text are to Nagel, The Structure of
Science: Problems in the Logic of Scientific Explanation (New York: Harcourt, Brace and
World, 1961).

16 His conclusion, after a review of typical examples, is that explanations of statistical
laws are deductive, at least one premise is statistical, and at least one premise must
have a greater degree of statistical dependence than that of the law to be explained.
Ibid., p. 520.

17 Nagel was certainly aware of the various criticisms of such a distinction between
theoretical and observational terms, but he has a very vigorous account of that dis-
tinction, admitting its vagueness, that cannot be discounted.
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observational terms. It is important to note that for Campbell, the
hypothesis and the dictionary consist of statements which have a
truth-value. Nagel adopted this canonical description of theories
with one crucial difference. Nagel associated three components with
each theory:

(1) an abstract calculus that is the logical skeleton of the explanatory
system, and that “implicitly defines” the basic notions of the system;

(2) a set of rules that in effect assign an empirical content to the abstract
calculus by relating it to the concrete materials of observation and
experiment; and

(3) an interpretation or model for the abstract calculus, which supplies
some flesh for the skeletal structure in terms of more or less familiar
conceptual or visualizable materials. (90)

Clearly, Nagel intended not only to reflect but to improve upon
Campbell’s canonical representation of how theories explain laws.

For Campbell, the representation of the required deduction would
look roughly like this: a finite number of hypotheses relating only
some of the theoretical terms to other theoretical terms, a finite
number of dictionary entries which Nagel called “coordinating defi-
nitions” (Hans Reichenbach’s terminology) relating some of the
theoretical terms to some observational ones, and finally the logical
conclusion, some law L.

vii. explanation and theories without truth-values

There is no point in trying to indicate the forms that the sentences
in each group might have in order to insure that the deduction is
correct. There are too many theories of various forms to do that.
Nagel’s representation of the explanation of a law would have these
features: the premises would include some members of the abstract
calculus of the theory, together with some statements that corre-
spond to what Campbell called the dictionary of the theory, followed
logically by the conclusion—the law to be explained. Nagel calls the
dictionary items “rules,” relating theoretical to observational terms,
but I do not think it matters much for the following argument
whether we use the statement or the rule version for the dictionary
entries. So, roughly, Nagel’s representation of the explanatory argu-
ment of a law should look something like this simple example (modulo
the point that most everyone agrees to, that in such explanations
there would usually be two hypotheses):

(i) T(t1, t2) (a theoretical statement)
(ii) D(t1, o1) (a dictionary entry)
(iii) L. (the law to be explained)
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By focusing on Nagel’s construal of (i) and (ii), it will become apparent
that Nagel had in fact proposed a bold variation on Campbell, that
resonates with a tradition that goes back at least to the geometer
Moritz Pasch, and more clearly to a notion of axiomatization that
David Hilbert advocated for mathematics and the physical sciences.

On Campbell’s account, (i) is an hypothesis relating two theoretical
terms, and hypotheses are statements that have a truth-value. In con-
trast, Nagel thought that (i) was not a statement at all, and was
neither true nor false. Campbell regarded the dictionary entry (ii)
of the theory as a statement that had a truth-value. In Nagel’s ver-
sion, the coordinating definitions are now described as rules. For
that reason, they too are neither true nor false.18

Ernest’s reason for taking Campbell’s hypotheses as lacking truth-
value is simple enough, though Ernest never made the argument
explicit. I believe it rested on two assumptions. The first is that
he thought that an “abstract calculus” (his version of Campbell’s
hypotheses of a theory) was an axiomatization of the theory, and
second, he also thought that axiomatizations of theories were to
be understood in a way that Hilbert made famous with his spe-
cial concept of axiomatization in mathematics and the sciences.
That, view, as we shall see, involved understanding that the axioms
of theories failed to be statements, and thus were neither true
nor false.

viii. explanation: axiomatization and the hilbert connection

Although Ernest did not argue for these assumptions, the reasons
he held them seem to me to be evident. If we look to the examples
that he provided for those theories he called “abstract calculi,” three
are singled out: Euclidean geometry, the kinetic theory of gases,
and probability theory as axiomatized by A. Kolmogorov. Concerning
Euclidean geometry, Nagel said that

The postulates of the system are frequently stated with the expressions
‘point,’ ‘line,’ ‘plane,’ ‘lies between,’ ‘congruent with,’ and several others
as the basic terms.…Indeed, in order to prevent the familiar although
vague meanings of those expressions from compromising the rigor
of proofs in the system, the postulates of demonstrative geometry are
often formulated by using what are in effect predicate variables like
‘P ’ and ‘L,’ instead of the more suggestive but also more distracting
descriptive predicates ‘point’ and ‘line.’ (91–92)
18 Consequently, (ii) should be listed as a rule, rather than as a premise. Whatever
status it has, it is supposed to guarantee a deductive transition to the conclusion, since,
for Nagel, Campbell, and Braithwaite, all explanations are deductive.
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The example of probability theory is especially interesting, because
it makes evident the connection of Ernest’s view of these axiomatiza-
tions with Hilbert’s axiomatization of Euclidean geometry. Kolmogorov
said explicitly that in providing axioms for probability, he was trying to
do the same for that theory that Hilbert did for Euclidean geometry.
Nagel was acutely aware of the development of this Hilbertian view
of the axiomatization of Euclidean geometry and its earlier anticipa-
tion by Pasch. In his penetrating early study of the development of
geometry he noted:

Indeed [Pasch declares], if geometry is to be really deductive, the
deduction must everywhere be independent of the meaning of geomet-
rical concepts, just as it must be independent of the diagrams; only
the relations specified in the propositions and definitions employed
may legitimately be taken into account. During the deduction it is
useful and legitimate, but in no way necessary, to think of the meanings
of the terms; in fact, if it is necessary to do so, the inadequacy of the
proof is made manifest. If, however, a theorem is rigorously derived
from a set of propositions—the basic set—the deduction has a value
which goes beyond its original purpose. For if, on replacing the
geometric terms in the basic set of propositions by certain other terms
true propositions are obtained, then the corresponding replacements
may be made in the theorem; in this way we obtain new theorems as
consequences of the altered basic propositions without having to repeat
the proof.19

This insight is incorporated into the very heart of Nagel’s account of
explanation of laws by theories. The upshot of these considerations
was to replace terms like “point” and “line” in a theory of Euclidean
geometry by predicate variables—say “P ” and “L.” This rewrite has the
result that (i), which looked like a statement having a truth-value, has
now been replaced by a statement-form. The idea is to do the same
for the basic predicates and relations of the kinetic theory of gases,
and probability theory. Something quite radical results when this
Hilbertian insight is introduced into the original Campbellian repre-
sentation of theories.

Consider what happens to the explanation of a law in which the
deduction is given by the proof-sequence (i) to (iii), once we replace
19 Reprinted in Nagel, Teleology Revisited and Other Essays in the Philosophy and History
of Science (New York: Columbia, 1979), pp. 237–38. Originally published in Nagel,
“The Formation of Modern Conceptions of Formal Logic in the Development of
Geometry,” Osiris, vii (1939): 142–223. The particular passage (translated by Nagel)
is also reprinted in Patrick Suppes, Representation and Invariance of Scientific Structures
(Stanford: CSLI, 2002), p. 46, where it is used to support a set-theoretical account
of axiomatic theories.
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(i) and (ii) by the statement-forms (i)′ and (ii)′. The explanatory proof
then is given by

(i)′ T(X1, X2)
(ii)′ D(X1, o1)
(iii) L,

where the theoretical terms have been replaced by predicate vari-
ables. The results are radical, and initially implausible. The first
thing to note is that the deduction fails to be an explanation of L.
The reason is that explanations are factive—that is, the sentences
that are used in explanations (whether as premises, or conclusions)
are true.20 Here however, “T(X1, X2)” is, according to Nagel, a lin-
guistic expression that has predicate variables in the place where
the usual representation had specific theoretical terms. I have also
replaced the theoretical term t1 in (ii) by a predicate variable. That
might be somewhat unfair to what Nagel intended. Some terms in
a theory may not have some experimental notion associated with
them (they do not occur in the dictionary). He says “in effect those
terms have the status of variables” (132, stress E. N.). So it looks like
the occurrence of the theoretical term in (ii) should not be replaced
by a predicate variable in (ii)′ since t1 has an experimental notion
associated with it. Nevertheless, if the theoretical terms in the
hypothesis part of the theory are replaced by variables, and if those
same terms which may also occur in a dictionary entry are not
replaced by a variable, but are kept as they are, then the deductive
connection may be broken, and the explanation destroyed. Here is
an example of that possibility (assuming that t and m are monadic
theoretical terms, o and o′ are experimental ones, and the universal
quantifiers are suppressed):

(iv) t 5 m
(v) o ® t
(vi) m ® o′
(vii) o ® o′

This is a perfectly fine deduction of what might be an experimental
generality (vii). However if we replace the terms in (iv) by distinct
variables, but leave the occurrences of those terms untouched in
the dictionary entries (v) and (vi), the deduction of (vii) is ruined.
20 Nagel’s view is subtle. He does say in effect that if it is required that every premise
in an explanation is either true or false, then it is almost unavoidable to require that
they be true (The Structure of Science, pp. 42–43). Factivity for him is a conditional. So,
for him one could say that factivity holds (vacuously) for those premises in explanations
that are, like (i)′, without any truth-value.
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It is obvious that in order to retain the deduction, you either have to
leave all the theoretical terms alone, or replace them all by predicate
variables. Since it is a deductive explanation that is at stake, I think
the thing to do is to replace all the occurrences of the theoretical
terms by appropriate variables. In that case, we are left with the
task of trying to explain the rules provided by (v) and (vi). The
original intention of dictionary entries was to show how a theory
can be related to experimental laws, but it is something of a mystery
to me how that is achieved by having the dictionary give various
ways in which observational terms are related to variables. Thus, if
the theoretical statements have no truth-value, I think the same thing
goes for the dictionary entries. And although Ernest thought of these
entries as rules, I do not see how that removes the difficulty.

There is another difficulty, relatively minor, with Nagel’s proposal
to replace theoretical terms with variables. It treats variables in a
very nonstandard way. Normally if we have a variable ranging over a
certain domain, and want to consider a special case, then the usual
thing is to use the name of the special element of the domain. So if one
wanted to go from “x is a prime number other than 2, and is odd” which
has no truth-value, to the special case of the number 3, one would use
the name of that number to obtain “3 is a prime number and is odd.”
Ernest however used another convention. His example (132) is

(1) For any x, if x is an animal and x is P, then x is a vertebrate,

where “P ” is a predicate variable, so that we have an expression that
has no truth-value. He suggested that one way to obtain a true state-
ment was to substitute “mammalian” for the predicate variable. The
result of this “substitution” is

(2) For any x, if x is an animal and x is mammalian, then x is a vertebrate.

What Ernest says is of course true, but it is not the way substitution for
variables goes. If it were a case of substitution, then what would replace
the variable is the name of something in the range of that variable. In
the case of predicate variables, the substitution requires the name of a
predicate and not the predicate itself. Strictly speaking then, predicate
variables are clearly being used in a nonstandard way. In short, Nagel’s
construal of theoretical terms as predicate variables is unfortunate. It
threatens even his central theme that all explanations are deductive.

ix. explanation: the schematic account

What would better suit Nagel’s purpose is a fresh start with the use of
some device other than predicate variables to describe those premises
that use theoretical terms in the explanations of laws. We suggest the
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systematic use of schematic letters to construct a new, but closely
related account—call it N*. It is a close cousin of Nagel’s account,
and would better represent his view as closely aligned with the views
of writers like M. Pasch and D. Hilbert.

Schematic letters are linguistic expressions of various kinds: sche-
matic sentential letters and schematic predicate letters, for example.
Wherever they occur in expressions, they may be replaced by spe-
cific sentences and specific predicates (respectively). As we shall see,
many of the difficulties connected with Nagel’s replacement of theo-
retical terms can be resolved when they are treated schematically.

Our idea is that instead of replacing theoretical terms by predicate
variables, they be replaced by schematic letters of the appropriate
kind. Nothing has changed in N *, so far as truth-values are con-
cerned. Axioms or premises that have had their theoretical terms
replaced by schematic letters will have lost whatever truth-value they
might have had.

Schemas are any expressions that have schematic letters embedded
in them, of whatever kind. The way to convert a schema to an expres-
sion that has a truth-value is to replace the schematic letters in them
by specific nonschematic expressions of the appropriate kind, and
this of course can be done in many ways. What I am suggesting then
is that Nagel’s view of the abstract calculi that he saw “embedded”
is best represented as a schematic theory.

We have already referred to the remarks of Pasch on geometry
which involved replacing terms by other terms and retaining a
proof. Those remarks were sharpened by Hilbert to make the sche-
matic features of his axiomatizations of mathematical and scientific
theories more evident. It was reported by Otto Blumenthal that
Hilbert, on the way back to Königsberg after hearing a lecture of
geometry that was abstract (1891?), said

One must be able to say at all times—instead of points, straight lines,
and planes—tables, chairs, and beer mugs.

And in the correspondence with Frege, he said

…you say that my concepts, e.g. ‘point’, ‘between’, are not univocally
fixed.…But it is surely obvious that every theory is only a scaffolding
(schema) of concepts together with their necessary connections, and
that the basic elements can be thought of in any way one likes. E.g.
instead of points, think of a system of love, law, chimney sweep…which
satisfies all the axioms; then Pythagoras’ theorem also applies to these
things. Any theory can always be applied to infinitely many systems of
basic elements for one only needs to apply a reversible one-one trans-
formation and then lay it down that the axioms shall be correspondingly
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the same for the transformed things (as illustrated in the principle
of duality and by my independence proofs.)…Thus the circumstance
I mentioned is never a defect (but rather a tremendous advantage) of
a theory.21

One important part of this statement is the claim that a theory is
only a scaffolding (schema) of concepts. The word that was trans-
lated as “scaffolding” in the correspondence with Frege is “Fachwerk,”
and it was used very frequently by Hilbert and his students in his
published articles and the now-published lectures and notes on logic
and physics.

In my opinion the translation “scaffolding” is misleading. Scaffolds
are constructions that are removed once a building is completed.
Obviously Hilbert did not intend that the theories be cast off.
“Fachwerk” has the standard meaning of a kind of timber-wood con-
struction very common in Europe from the Middle Ages onward.
It is a framework that is embedded in the construction, but not
covered over. It was supposed to be seen from both inside and
outside the building. There are in this framework various empty
spaces which can be filled with stucco, brick, mortar, or adobe.
It was understood that these interstices of the Fachwerk could be
filled in many various ways, provided of course that they met the
constraints imposed by the framework. The theory is supposed to
remain the same, invariant, despite the various “infill” that could
be used.

There are several ways to use the idioms of contemporary logic
to describe what Hilbert meant by “Fachwerk.” Other translations
use “framework,” and still others use model-theoretic terminology.
I prefer “schema” simply because that is the word he sometimes
used for “Fachwerk,” and he does speak of “filling in the Fachwerk,”
which fits nicely with the idea of schematic letters.

Here is an example of this kind of axiomatization of Euclidean
geometry provided by Hilbert and Bernays:22

Axiom II.1. (x)(y)(z) [Zw(x, y, z) ® Gr(x, y, z)], to be read as “If x lies
betweeen y and z then x, y, and z lie on a straight line.”

They say that the three-place predicates “Zw” and “Gr” are not the
names of any specific predicates in particular. These terms are not
names, but can be replaced by other three-place predicates, subject
21 Gottlob Frege, Philosophical and Mathematical Correspondence, ed. Gottfried Gabriel
et al. (Chicago: University Press, 1980), p. 42.

22 David Hilbert and Paul Bernays, Grundlagen der Mathematik, Bd. I (Berlin, Germany:
Springer, 1934), p. 6.
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of course to the constraints set by the axiom. As Bernays expressed
the matter,

Thus the axiom system itself does not express something factual; rather,
it presents only a possible form of a system of connections that must be
investigated mathematically according to its internal [innere] properties.23

We can then express the schematic form of the axiom as

(x)(y)(z) [S(x, y, z) ® S*(x, y, z)],

where S and S* are predicate schematic letters. Clearly this axiom has
no truth-value, and the same holds for all the axioms taken together.

Replacing some of the theoretical terms by the appropriate sche-
matic letters avoids the problems raised by Nagel’s use of predicate
variables. With a shift to the schematic account N *, several benefits
are automatic. First, the sequence (iv)–(vii), with the theoretical terms
replaced by schematic letters, now becomes a genuine deduction—
something not true if those terms are replaced by predicate vari-
ables.24 Second, it is impossible to make sense, say, of a dictionary
entry that has the form of o ® t (to use the made-up example of
(iv)–(vii) above), if “t” is replaced by a variable, since there is no
sense provided for a conditional with a variable as consequent (or
antecedent). However it is relatively easy to make sense of a condi-
tional with a consequent (or antecedent) that is a schematic letter.

As Ernest has emphasized, the dictionary items are there to provide
a deductive link to observational material. This, the shift to schematic
letters achieves.

x. explanation: whither campbell’s dictionary?

There is however to my mind a serious oversight with Nagel’s claim
that if there is to be a link from a theory to observational matters then
dictionary items are indispensible. It needs qualification. The claim is
plausible if the link is supposed to be deductive.

However, there are two considerations under which the claim is
incorrect. The first is that there is a link between some theories and
experimental matters, only that link is not deductive, and not proba-
bilistic either. There are many examples of significant theories that
are regarded as having great scientific worth because of their many
23 Bernays, “Hilbert’s Significance for the Philosophy of Mathematics” (1922), trans.
Paolo Mancosu, in Mancosu, From Brouwer to Hilbert: The Debate on the Foundations
of Mathematics in the 1920s (New York: Oxford, 1998), pp. 189–97, at p. 192.

24 According to Nagel, “If the theory is to be used as an instrument of explanation
and prediction, it must somehow be linked with observable materials” (The Structure of
Science, p. 93).
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successes (the germ theory of disease, the kinetic theory of gases,
and the Hamiltonian theory of least action are a few examples).
These theories do not have the form of universally quantified con-
ditionals. They have been called “theories-for,”25 and none of the
well-known experimental successes of such theories follow deduc-
tively or probabilistically from them. Moreover, no special link or
coordinating definition is required to make the connection of those
theories with their successes. The second is that in the present case,
where the theory is understood to be schematic, there is a way in
which a theory can have links to observational matters without the
need to have dictionary entries. Since an axiomatized theory in
general (for Hilbert) is schematic, there are many different ways
in which the various schematic letters in it can be replaced by spe-
cific predicates and relations to yield statements, which unlike the
schemata, have a truth-value. Let us call the result of such replace-
ments, if true, applications of the theory.

Thus, to replace “point,” “line,” and “plane,” now thought of as
schematic letters, by “tables,” “chairs,” and “beer mugs” we do not
need coordinating definitions relating these two groups of terms.
It suffices to replace one set of terms for the other directly into the
schematic theory, and to check whether the result is true. Hilbert
himself used such replacements. He noted that by such replace-
ments, some of the axioms of Eudoxus’s theory of ratios yielded
a general statement about genetics. Of course given his claim that
“point” in his axiomatization of Euclidean (plane) geometry could
be replaced by “ordered pair of real numbers,” and “line” by “linear
equation,” to obtain a true application, it becomes clear why he
wanted to say that ordered pairs of real numbers are also points.
It is also clear that he did not mean that points could be explicitly
defined as ordered pairs (or triples) of real numbers. Clearly some
applications have more interest than others.26 But none of them are
deductive consequences of the schematic theory.
25 A discussion of theories-for, their importance for understanding the nondeductive
relation of them to their successes, and the kind of explanation that they provide can
be found in Sidney Morgenbesser and Arnold Koslow, “Theories and Their Worth,”
this journal, cvii, 12 (December 2010): 616–47.

26 In fact, Hilbert had a short proof showing that there are an infinite number
of such applications, which was subsequently rediscovered by the mathematician
M. H. Newman, and Donald Davidson. Hilbert wrote to Frege, “Any theory can always
be applied to infinitely many systems of basic elements. For one only needs to apply
a reversible one-one transformation and then lay it down that the axioms shall be
correspondingly the same for the transformed things (as illustrated in the principle
of duality and by my independence proofs.” Reprinted in Frege, op. cit., p. 42; abridged
from the German edition by Brian McGuinness, ed., and Hans Kaal, trans.
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I have no idea how to work out the details of Hilbert’s sugges-
tion that “points,” “straight lines,” and “planes” of Euclidean geometry
could be replaced by “tables,” “chairs,” and “beer mugs” (or, as he said
in his correspondence with Frege, “instead of points, think of a system
of love, law, chimney sweep…which satisfies all the axioms…”). How-
ever there are other applications like the replacement of “point”
by “intersection of two light rays,” and “straight line” by “path of a light
ray in homogeneous media,” and one can see how the resulting appli-
cation would be a generalization of geometrical optics, with no need
for coordinating definitions.

xi. explanation, schematic subsumption, and factivity

Granted that this is just a sketch, the detailed working out of this
program is, we think, worth pursuing. It indicates how some laws
(in the last case laws like refraction and reflection of geometrical
optics) might be subsumed under a theory. We shall say that the
applications are schematically subsumed under the theory, meaning
that it is just a special case of replacement of the various schematic
letters of the theory. The applications of a schematic theory are all
uniformly subsumed under the same theory, and that I think counts
for some type of explanation. Of course it is not the kind of sub-
sumption endorsed by, say, Hempel when he said

…I think that all adequate scientific models and their everyday counter-
parts claim or presuppose at least implicitly the deductive or inductive
subsumability of whatever is to be explained under general laws or
theoretical principles.27

Hempel was concerned with deductive and probabilistic kinds of
subsumption. The applications of a schematic theory, however, are
neither deductive nor inductive consequences of the theory from
which they were obtained. Nevertheless, if it is possible to think of
deductive (or inductive) subsumption as explanatory, then why not
make the similar claim when all the applications of the theory are
uniformly subsumed under it? At the very least it is also a unification.

There is still the fact that even if we go schematic with the N *
version of Nagel’s original position, both accounts fail to satisfy the
factivity condition for explanations of laws. Theoretical statements
have no truth-value, whether, as with Nagel, it is because theoretical
terms are construed as predicate variables, or whether, as in N *, the
theoretical terms are construed as schematic letters.
27 Hempel, Aspects of Scientific Explanation, and Other Essays in the Philosophy of Science
(New York: The Free Press, 1965), pp. 424–25.
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For Ernest the distinction between experimental laws (contain-
ing no occurrences of theoretical terms) and theoretical laws (which
do have one or more occurrences of theoretical terms in them)
makes a difference in the issue over factivity. There are a few pos-
sibilities worth mentioning: (1) An experimental law is explained by
other experimental laws. In this case factivity holds. (2) In the case
of an explanation of an experimental law by theoretical ones,
matters are different. Some schematic premises deductively yield
and perhaps even explain a nonschematic generalization. One
example of this possibility might be the argument (iv) to (vii) above.
Here the experimental law (vii) is true (say) but what explains
it is schematic, and so without truth-value. In such a case we might
say that the explanation is semi-factive, a condition which requires
only that what is explained is true (rather than what explains must
be true). In this case the situation is comparable to that of the
factive “knows that…”. (3) Some theoretical laws explain other
theoretical laws. In this case there is no factivity at all, not even
semi-factivity, since the explainers and the explained do not have
truth-values. This may raise problems for Ernest’s theory of reduc-
tion since he seems to regard theory reduction as a case of expla-
nation of one theory by another.28 Maybe not. Recall that for
Ernest, factivity is conditional: if the items in an explanation have
any truth-value at all, then they are true. So in this case, factivity
would be satisfied vacuously!

There is yet another way in which factivity is involved even with
theories that are schematic. Such theories we have said have their
applications (obtained by replacement of their schematic letters with
appropriate predicates and relations). Those applications of a theory
will in general not be schematic, and will in turn figure in the expla-
nation of other nonschematic statements. For those explanations
that are based on applications that are subsumed under the theory,
nonvacuous factivity still prevails.

xii. explanation and generality

We turn finally to a problem which both Braithwaite and Nagel recog-
nized as an important, maybe even a crucial element of the explana-
tion of laws. It seems that there is no explanation of a law which does
not involve at least one premise that is more general than it. As far as
I can tell, only Nagel attempted a formal account of the concept
28 “Reduction…is the explanation of a theory or a set of experimental laws estab-
lished in one area of inquiry, by a theory usually but not invariably formulated for
some other domain.” Nagel, The Structure of Science, p. 338.
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“is more general than.” Unfortunately, I do not see at present how his
account fits into our present (schematic) account of Nagel’s view of
the explanation of laws. There are several drawbacks to his account
of generality.

First there is the restriction of his analysis to only those laws
that are best expressed as universally quantified conditionals. There
are, as we have noted, some laws and theories of high scientific
merit which do not have that elementary form. Second, it appears,
on his account, that whether one law is more general than another
depends critically on syntactic form, so that the order of generality
between two laws can change if one uses different, but logically
equivalent forms of those laws. And finally, it seems that the
account is incompatible with simple examples of explanations
offered by Nagel.

Ernest has two accounts of generality: one which addresses the
problem of when one group of laws (say, physics) is more general
than another (say, a group of biological laws), and a simpler version
for comparing one law with another. We concentrate on the simpler
version. It goes like this: Let L be the law that All As are B, and L* be
the law that All C s are D. Then,

L is more general than L* if and only if it is logically true that All C s
are A, and it is not logically true that All As are C. (38)

I do not find it so damaging that the laws for which this concept
is defined are limited to generalized conditionals. It would still be
an important achievement even so. The second feature of this
definition is that two logically equivalent expressions of a law
can differ in generality. That seems to me not only surprising,
but unwelcome. Ernest was well aware of this feature. His example
is that

(1) “All living organisms are mortal” is more general than
(2) “All human beings are mortal” on his account, but
(3) “All nonmortals are nonliving organisms”

is not more general than (2) “All human beings are mortal,” even
though (1) and (3) are logically equivalent.

Ernest has an interesting defense to mitigate this result. It depends
upon his deep commitment to a pragmatic view of the matter.
He thinks that there is “a tacit reference to contexts of use in the
formulation of laws” in which the range of application of the law
(indicated by the antecedent of the conditional) can shift. His exam-
ple is that the common use of “Ice floats in water” has as its range of
application cases of ice that are, were, or will be immersed in water,
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and he says that rarely (if ever) will the range of application be
those things that never float in water. He may be right in this obser-
vation, but I do not see what the target of investigation (what
happens to ice immersed in water) has to do with the generality of
a statement. That matter may be moot, but there is something
more serious at stake. This result leaves open the possibility that
you may lose an explanation of a law by using one formulation
of a law rather than its logical equivalent. Here is the possibility
that I have in mind. Suppose that there is an explanation of the
form (i):

(i) A ® B, [ØC ® (B ® ØA)] implies (A ® C ). Now,
(ii) [ØC® (B®ØA)] is logically equivalent to [(A Ù B)® C], therefore
(iii) A ® B, [(A Ù B) ® C] implies (A ® C ),

but (iii) is not an explanation. The reason is that neither of the
premises has greater generality than the conclusion. If A ® B has
greater generality than (A ® C ), then (A ® A) is logically nec-
essary, and it is also not logically necessary. Clearly impossible.
And if [(A Ù B) ® C] has greater generality than (A ® C ), then
[A ® (A Ù B)] is logically necessary, and [(A Ù B) ® A] is not logi-
cally necessary. Also clearly impossible. Consequently, there can be a
loss in explanations with the substitution of logical equivalents.

The most serious drawback to this account of “is more gen-
eral than” is that clear examples of explanations of laws fail to
meet the condition that at least one of the premises has greater
generality than the law to be explained. The example is Nagel’s.
He offers a specific example of an explanation of the law, “When
gases containing water vapor are sufficiently expanded with-
out changing their heat content, the vapor condenses.” It has
the form

(T) All As are C s and All C s are B s, therefore All As are B s.

Now “All As are C s” cannot be more general than “All As are B s,”
for then we would have that “All As are As” is a logical truth,
and also that it is not. Clearly impossible. Moreover, if “All C s
are B s” is more general than “All As are B s,” then “All As are
C s” is logically necessary. But that is one of the two premises of
the explanation, and Nagel’s view is that scientific laws are not
logically necessary (52–56). The conclusion is therefore that there
are no explanations of laws that have the form of (T)—not even
the nice one that he provided.

Despite the fact that this specific proposal for explicating the varia-
tion in generality among laws does not work, it should be possible
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with some further effort to fit this notion into the schematic frame-
work we have attributed to Nagel.29

Norman Campbell provided an initial source for the work of Nagel
and Braithwaite, with his canonical representation of theories. They
incorporated that structure into their accounts of laws and explana-
tions in science. Campbell’s assumption that all scientific explanations
involved deductions was retained by both Nagel and Braithwaite.
From that point on however, the differences widened under the
influence of two different traditions, to yield two remarkable origi-
nal, viable accounts. Campbell regarded the hypothesis and dic-
tionary entries as statements with truth-values. That assumption was
retained by Braithwaite, but was rejected by Nagel. Nagel, in contrast,
followed a tradition defended by the mathematician D. Hilbert, who
developed the idea that theories were neither true nor false. Ernest
thought theories were statement-forms without truth-value. Under
the influence of J. S. Mill and Ramsey, Braithwaite developed a
notion of law indexed to special logical structures which he called
deductive systems, but the notion of a law was not tied by Nagel to
membership in any specially dedicated deductive structure. Lastly it
is to Ernest that we owe an account of “is more general than” which
plays a prominent role in explanations of laws: some of the laws
that explain others must be more general than them. Braithwaite
seems to have thought that the laws of his established deductive sys-
tems were ranked by generality, but he offered no account of that
central idea.

arnold koslow
City University of New York Graduate Center
29 I am not too optimistic about the prospects of an account that depends so cru-
cially on the scope of attribution. That concept makes sense only when the laws
are universally quantified conditionals. Most of the Hilbert and Bernays axioms for
Euclidean geometry (as cited above) are not conditional in form. But considerations
of schematic subsumption would not cover the convincing examples of nonschematic
examples of comparative generality that Nagel has provided. It is still an open prob-
lem as far as I can see.
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REFLECTIONS ON ERNEST NAGEL’S 1977 DEWEY
LECTURES TELEOLOGY REVISITED
It is now over 60 years since I took my first graduate course in
philosophy at Columbia University in January of 1947. The
course was a seminar by Ernest Nagel on the philosophy of logic

of Bradley and Dewey, and by the end of the second meeting I was
enthralled by Ernest’s patient style and careful criticisms of their
logical views. It is still easy for me to visualize Ernest as he walked
back and forth in the seminar room complimenting, on the one
hand, the philosopher being studied, but always ending, on the
other hand, on a clear statement of something that was wrong in
the text being examined. As I have been reading, in preparation
for writing this article, what he wrote about biology, mostly after
I left Columbia in 1950 to come to Stanford, the cadence of the
written words and the style of argument remind me very much of those
first days of listening to him in 1947. Yet in the years I was at Columbia,
Ernest did not give a single seminar or course on the philosophy of
biology, nor did anyone else at Columbia that I can remember.

It is certainly different now. There are more biologists at Stanford
than any other kind of scientist, by a wide margin. Courses in biology
are now given everywhere and for every kind of purpose. Stanford,
for example, now has a separate major in human biology. And most
philosophy departments now feel obligated to give at least one
course in the philosophy of biology. Not surprisingly, Ernest, with
his wide scientific interests, began earlier than most philosophers
to think about biology.

Nagel’s first article I know about that has an interesting bearing
on biology is a very useful one on naturalism and materialism.1 From
the style of the arguments, I would judge that the article was mainly
written by Nagel, the youngest of the three authors. After this there
are two important articles just by Nagel himself.2 Then there is a
break until 1961 with the publication of his magisterial book.3 Several
1 John Dewey, Sidney Hook, and Ernest Nagel, “Are Naturalists Materialists?” this
journal, xlii, 19 (Sep. 13, 1945): 515–30.

2 Nagel,“Mechanistic Explanation and Organismic Biology,” Philosophy and Phenome-
nological Research, xi, 3 (March 1951): 327–38; Nagel, “Wholes, Sums, and Organic
Unities,” Philosophical Studies, iii, 2 (February 1952): 17–32.

3 Nagel, The Structure of Science: Problems in the Logic of Scientific Explanation (New York:
Harcourt, Brace and World, 1961).

0022-362X/12/0908-09/503–15 ã 2012 The Journal of Philosophy, Inc.
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parts of it deal with biology, and I shall return to discuss them
later. After another break, he published two long articles containing
his John Dewey Lectures at Columbia in March of 1977, together
titled Teleology Revisited, which appeared almost immediately in this
journal,4 and were later reprinted in a volume of essays.5

In the rest of this article, I will devote most of the time to analyz-
ing the parts of the 1961 book The Structure of Science devoted to
biology, and the 1977 John Dewey Lectures on teleology. The Struc-
ture of Science is densely argued from chapter to chapter as it surveys
the natural and social sciences. Chapter 12 is entirely devoted to
biology. Its main focus concerns the long controversy about teleo-
logical explanations. It was my original intent to survey rather care-
fully everything Nagel has written on the philosophy of biology, but
the more I re-read his published work of half a century ago, I came
to see that there were too many different topics to discuss them all
with any thoroughness. Moreover, it seems to me that his analysis in
the book of teleological explanations, and his return to this topic in
his 1977 Dewey Lectures, represented his most serious and engaged
work in the philosophy of biology. At the same time, the tangled
issues he examined with care remain important.

So, I have organized this article into five sections. The first two
deal with teleological explanations, first, in the 1961 book, and
second, in the first Dewey Lecture. The third section, representing
the second half of chapter 12, focuses on the stance of organismic
biologists toward mechanistic explanations. The fourth section exam-
ines Nagel’s extended analysis in the second Dewey Lecture on func-
tional explanations in biology. Finally, the fifth section consists of my
own comments on some of the contemporary issues about the nature
of biology as a science, related to Nagel’s critical analysis.

i

It is not possible to give a reasonable paraphrase of the many bal-
anced arguments Nagel gives in chapter 12 of The Structure of Science
on the status of teleological explanations. I mention one point that
he covers at the beginning in rather short order, but that is a topic
of much greater concern currently. This is the status of conscious
purposes. I am sure this is because the status of consciousness as
such did not occupy anything like its current prominence when he
4 Nagel, “Goal-Directed Processes in Biology” and “Functional Explanations in
Biology,” this journal, lxxiv, 5 (May 1977): 261–79 and 280–301.

5 Nagel, Teleology Revisited and Other Essays in the Philosophy and History of Science
(New York: Columbia, 1979).
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was writing. He does emphasize that the conscious aspect of purpose,
so to speak, is not relevant to his focus on teleological explanations.

He does give much more attention to the claim often made in the
past, and still by some, that teleological explanations are an essential
part of biology, as a special subject matter for them. He has a number
of arguments against this position, among them that we can, cor-
rectly, use extremal principles to formulate classical mechanics in
teleological language. Another closely related one is the search for
stability results in mechanics, which resembles arguments concerning
the important goal of persistence in biology.

A related point, but from a different angle, is the claim that the
special character of biology is that it studies organic systems, which
are fundamentally goal-directed. Nagel responded to this claim by
asking, first, can we, in fact, identify the particular structures of
goal-directed systems in a neutral way? And, second, does the current
focus of biology constitute in itself strong evidence for this claim? I
cannot resist quoting the last part of his response to these questions.

Moreover, some systems have been classified as “teleological” at one
time and in relation to one body of knowledge, only to be re-classified
as “nonteleological” at a later time, as knowledge concerning the physics
of mechanisms improved. “Nature does nothing in vain” was a maxim
commonly accepted in pre-Newtonian physics, and on the basis of the
doctrine of “natural places” even the descent of bodies and the ascent
of smoke were regarded as goal-directed. Accordingly, it is at least an
open question whether the current distinction between systems that
are goal-directed and those that are not invariably has an identifiable
objective basis (i.e., in terms of differences between the actual organiza-
tions of such systems), and whether the same system may not often be
classified in alternative ways depending on the perspective from which
it is viewed and on the antecedent assumptions adopted for analyzing
its structure.6

Later, I add to this passage some engineering examples of my own.
Nagel then goes on to endorse as the most reasonable approach the
system approach to biology, exemplified, at the time he was writing,
by G. Sommerhoff,7 and the work of Norbert Wiener and colleagues.8

To the exposition and defense of this system view, Nagel gives an
especially careful presentation, because he endorses it, more than
6 Nagel, The Structure of Science, p. 419.
7 G. Sommerhoff, Analytical Biology (London, UK: Oxford, 1950).
8 Arturo Rosenblueth, Norbert Wiener, and Julian Bigelow, “Behavior, Purpose and

Teleology,” Philosophy of Science, x, 1 ( January 1943): 18–24; Wiener, Cybernetics: Control
and Communication in the Animal and the Machine (New York: Wiley, 1948).
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any other, in its effective way of generalizing the argument away
from purely biological subject matter to other scientific structures,
physical as well as biological, where, here, “physical” means in the
sense of physics. His defense was strengthened by the simultaneous
appearance of a number of important works on this topic. The sig-
nificant detailed points that he makes are too numerous to enu-
merate here, so I end by quoting his summarizing final paragraph.

It follows from these various considerations that the distinction between
structure and function covers nothing that distinguishes biology from
the physical sciences, or that necessitates the use in biology of a distinc-
tive logic of explanation. It has not been the aim of the present discus-
sion to deny the patent differences between biology and other natural
sciences with respect to the role played by functional analyses. Nor has
it been its aim to cast doubt on the legitimacy of such explanations in
any domain in which they are appropriate because of the special char-
acter of the systems investigated. The objective of the discussion has
been to show only that the prevalence of teleological explanations in
biology does not constitute a pattern of explanation incomparably dif-
ferent from those current in the physical sciences, and that the use of
such explanations in biology is not a sufficient reason for maintaining
that this discipline requires a radically distinctive logic of inquiry.9

ii

I now pick up his analysis of teleological explanations sixteen years
later. In direct reference to earlier work, Nagel says at the beginning
of the first Dewey Lecture the following: “The recent literature
sometimes breaks fresh ground; but much of it consists of modified
(and sometimes much improved) versions of well-known views, pre-
sentations of difficulties in older analyses, or challenges to basic
assumptions underlying customary approaches. My discussion will,
in consequence, inevitably revisit much familiar territory, though
with some different objectives than on previous journeys.”10 He then
proceeds to introduce the analysis of several different views of tele-
ology he did not cover in the book, most of these being generated
by publications that appeared later.

The first new view he considers is the intentional one, which
emphasizes human purposes and goals as primary. Following this
idea, Nagel refers in schematic form to the belief-desire model,
according to which goals can be achieved by alternative methods
internally evaluated. In my view, to generalize this intentional human
9 Nagel, The Structure of Science, p. 428.
10 Nagel, “Goal-Directed Processes in Biology,” p. 262.
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model, formal similarity or isomorphism to human behavior should
be found. Such investigations are familiar in other parts of biology,
as can be seen in the detailed anatomical studies of the structure
of eyes in various species. On the other hand, I am skeptical of the
belief-desire model as being appropriate. It is too far from a psy-
chologically plausible model, as I have argued elsewhere.11

The second view considered is the one that Nagel says is derived
from information theory, and he labels it the program view. The dis-
cussion expands upon the earlier one about programming described
in the 1961 chapter, but is now revised as a reflection, I am sure, of
the rapid development of computer science and the widespread use
of computers between 1961 and 1977. Perhaps his most significant
example is the one made prominent by the DNA discoveries about
the programming of the human genome. For more detailed consid-
erations, he examines the approach of the prominent biologist Ernst
Mayr.12 Within teleology, Mayr introduces the distinction between
processes that are teleomatic, or in other words, automatic, as is the
case for many human habits, and, on the other hand, “teleonomic,”
which is close to many standard uses of the word “teleological.”

Nagel has three principal objections to Mayr’s view. The first is that
this concept is not normally used in the definition of goal-directed
processes, and does not seem essential. His second objection is that
control of a process by a program is not sufficient for the process
to be judged goal-directed. His counterexample to show this is the
knee-jerk reflex, which does not have the property of persistence
required of a goal-directed process. His third objection is to Mayr’s
distinction between open and closed programs. The intuitive idea,
Nagel asserts, is clear, at least in some general sort of way, but it is
hard, if not impossible, to apply the distinction in practice. (I omit
the details of this argument.) Nagel’s closing point is that in sum-
mary, it is also hard in general to distinguish between teleomatic
and teleonomic processes.

Nagel then returns to the system view much discussed in the 1961
analysis, but now called the “system-property view.” He focuses on a
serious problem that was not discussed in 1961. This is the problem
11 Patrick Suppes, “Rationality, habits and freedom,” in Nicola Dimitri, Marcello
Basili, and Itzhak Gilboa, eds., Cognitive Processes and Economic Behaviour (New York:
Routledge, 2003), pp. 137–67; Aimee Drolet and Suppes, “The good and the bad,
the true and the false,” in Maria Carla Galavotti, Roberto Scazzieri, and Suppes,
eds., Reasoning, Rationality, and Probability (Stanford: CSLI, 2008), pp. 13–35.

12 Ernst Mayr, “Teleological and Teleonomic: A New Analysis,” in R. S. Cohen and
Marx Wartofsky, eds., Methodological and Historical Essays in the Natural and Social Sciences
(Boston: Reidel, 1974), p. 98.
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of having variables that are not determinantly connected by known
laws of nature. Such independence of variables is required in the
system-property view. Nagel supports it and does not find the rela-
tivistic formulation unacceptable, but an honest admission of a
common state of science. Given this hypothesis of at least two
variables that are appropriately independent, Nagel judges that
such explanations of goal-directed processes in biology can have
a structure which is like that of nonteleological explanations in
the physical sciences.

Nagel concludes that the sort of explanations in terms of pur-
posive behavior is characteristic of biology and can be recognized
as being scientifically appropriate when formulated in a way that
satisfies the various constraints discussed. I note that I have omitted
necessarily the essential content of some of his elaborate arguments,
but I believe my summary is faithful to his general position.

iii

In the second half of chapter 12 of The Structure of Science, Nagel did
not write something directly on functional explanations in biology.
What he did was to write a prelude on the standpoint of organismic
biologists that he defends as being the proper scientific attitude
toward biology. This is the attitude that biology neither has vitalistic
forces, in the sense of such nineteenth-century scientists as Driesch,
nor is reducible in the other direction to physics. The second half
of chapter 12 explains the positive features of this viewpoint. Now
that vitalism is dead, Nagel emphasizes, at the beginning, the uni-
fying theme among organismic biologists is this rejection of “mecha-
nistic” explanations in the spirit of physics. And, as he also emphasizes,
such biologists are often not clear about what they are objecting to.
It is to these arguments that I now turn.

First, it is evident that there are areas of biology that do not need
or seem to require mechanisms in their formulations. Two examples
that are given are the theory of evolution and the gene theory of
heredity. Second, biological processes are not reducible to the con-
cepts and laws of physics and chemistry. Claims about holism and
the strong dependence of the parts of biological systems are used
to support this argument. Third, biological systems are hierarchically
organized. There seems to be no comparison made here with the
hierarchical physical organization of electrons, atoms, and molecules.

In reply to these arguments, Nagel points out that it is widely
recognized that there is no real possibility of the full reduction
of biology to physics and chemistry. Since such arguments against this
reduction are well known, many of them cited by Nagel in footnotes,
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I will not elaborate on a point that is nonetheless important. Nagel
stresses the openness of the extent to which physical and chemical
laws can be used to explain biological phenomena. It is fair to say that
writing half a century after the appearance of The Structure of Science,
I find the use of physical concepts and arguments in biology is much
greater, but any complete reduction of biology to purely physical
ideas remains out of sight. Indeed, the famous remark of Dirac that,
with the discovery of quantum mechanics, chemistry has become an
applied branch of physics, represents an equally unattainable ideal
in the framework of modern chemistry, which is flourishing as much
as ever as a discipline separate from physics.

Nagel ends the chapter by saying that the main conclusion is that
organismic biologists have not established the absolute autonomy
of biology as a scientific discipline. The ironic comment to be made
these many years later is that something else that would have
seemed very surprising in 1961 is that biology is in some sense
absorbing the other sciences. For example, many of the doctoral
dissertations at Stanford in applied physics, electrical engineering,
and computer science are now about some biological topic. More-
over, the School of Engineering at Stanford has many under-
graduates, but now a large number are in the new Department
of Bioengineering. From a research standpoint, literally thousands
of papers are being produced each month worldwide on biological
experiments that use increasingly sophisticated physical apparatus.
What is happening is the intimate and far-reaching commingling
of the physical and biological sciences, which suggests that in the
future the relevant question will not be that of the reduction of
biology to physics and chemistry, but rather, can we actually distin-
guish and separate these disciplines in a meaningful way.

iv

In several ways the second John Dewey Lecture is of greater gen-
eral importance to Nagel’s philosophy of biology than the first.
In discussing this topic, I follow the pagination of the version pub-
lished in this journal, which is essentially the same as what was
published two years later in the volume already referred to. The
initial and the longest part of the article concerns Nagel’s careful
and extended survey of the variety of views on functional expla-
nation that may be found in the literature circa the 1970s or
somewhat earlier. To structure my exposition explicitly, I number
each of these views in the order they are set forth in the article. To
begin with, here are two of Nagel’s simple examples of functional
explanations: “fish have gills in order to obtain oxygen” and “human
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blood contains leucocytes for the sake of defending the body against
invading bacteria.”13

(i) The first type of functional explanation is the neutral view,
as Nagel puts it, “teleologically neutral.” An example to illustrate this
idea is given from physics—the function of mass in the motion of a
physical object. Nagel notes that in physics such functions have the
same role as explanations, which in physics have no teleological
connotations. He cites as an example of such a neutral view in
biology the functional explanations given in an article by Walter
Bock and Gerd von Wahlert, who essentially equate biological func-
tions with biological roles.14 It is this treatment of roles as functions
and nothing more that makes their view a neutral one. They define
the biological role of a faculty in an organism as “the action or use
of the faculty by the organism in the course of its life history,” and
I quote Nagel, who partially quotes them: “…the biological role of
the large mucus glands of gray jays is said to be the use of those
glands ‘as a glue to cement food particles together into a food
bolus which is then stuck to the branches of trees’.”15 Nagel is more
or less accepting of this kind of functional explanation, as one that
works similarly in physics, where Nature’s plan or the role of com-
plex numbers in quantum states are often referred to, but in an
innocent metaphorical way. I take it the concept of role in this
neutral view is so being interpreted by Nagel.

(ii) His main criticisms are devoted to the widespread second
view of functional explanation in biology. This is the one that mainly
assumes that biological functional explanations are teleological, in
the sense that they are about actions directed by some agent who
has a goal in mind. Nagel focuses on the discussion of this view by
Larry Wright, who strengthens the account of selective agency to
require an analogy to some “conscious” function in human behavior.16

Put another way, Wright holds that functional explanations in biology
should have the same pattern as do explanations of functions of
which humans are conscious. Nagel rightly offers strong criticism of
this view, which as far as I know does not have much current atten-
tion. Among Nagel’s criticisms I mention his argument that natural
selection in evolution is selection by chance, as opposed to selection
13 Nagel, “Functional Explanations in Biology,” p. 280.
14Walter J. Bock and Gerd von Wahlert, “Adaptation and the Form-Function Com-

plex,” Evolution, xix, 3 (September 1965): 269–99, at p. 274.
15 Nagel, “Functional Explanations in Biology,” p. 281.
16 Larry Wright, Teleological Explanations: An Etiological Analysis of Goals and Functions

(Berkeley: California UP, 1976).
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by a conscious agent. Nagel points out that the attempt to make
Darwinian selection in any sense agency-oriented is a mistake, even
though many biologists and more theologians have long yearned
to show that such an agency view is plausible.

(iii) This view gives functions a purely methodological or heuristic
role. As Nagel remarks, it is close to Kant’s complicated formulation
of teleological principles as regulative, rather than constitutive, for
guiding biological and human inquiry. Kant, of course, had to strug-
gle to make these ideas consistent within the framework of universal
mechanical laws. This is why the teleological principles are not con-
stitutive of nature, but maxims. I note that a surprisingly similar view
is adopted widely in the use of statistics, and probability theory more
generally, in the classical physics of the nineteenth and twentieth
century. The conceptual conflict that seems apparent is dealt with
in a way that surely would have satisfied Kant. For more discussion
of this matter, see my article.17

(iv) The fourth view, which Nagel regards as more plausible than
the three discussed so far, is that such functions contribute to the
“welfare” of either individual organisms or populations of them. He
first examines the critique of Carl Hempel, a well-known philoso-
pher who was also a good friend of his, so his treatment of this
view is sympathetic, even though critical. The heart of Hempel’s
critique is that a functional explanation must provide a specific
explanation to be satisfactory, but if the occurrence of any one of
a number of alternatives would work as well, then no functional
explanation of the presence of some specific cause has been given.
The issue Hempel’s analysis generates is associated with the doctrine
of the plurality of causes, as Nagel points out. Yet a possible plurality
of causes, or in Hempel’s language, possible alternatives, is not suf-
ficient to invalidate a detailed argument. Nagel uses the familiar
example of determining the cause of death, which is in fact often
straightforward, even though there are cases in which a plurality
of causes is a real problem. In my version of Nagel’s critique of
Hempel’s analysis I have much simplified the argument to what I
judge is the main point.

Nagel moves on in his exposition to the version of the welfare view
proposed by Michael Ruse.18 The special interest here is that Ruse
gives his analysis as part of a critique of some of Nagel’s own views.
17 Suppes, “Indeterminism or Instability, Does it Matter?” in Gordon G. Brittan, Jr.,
ed., Causality, Method, and Modality: Essays in Honor of Jules Vuillemin (Boston: Kluwer
Academic, 1991), pp. 5–22.

18Michael Ruse, The Philosophy of Biology (London, UK: Hutchinson, 1973), chapter 9.
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In responding to Ruse’s criticisms, Nagel also makes his own criti-
cisms of Ruse. The discussion here is extended and rather compli-
cated. I shall try to give a sense of it, at least in a brief way, by citing
one of the amusing examples. Ruse claims that the goal-seeking
system to which Nagel’s own formulation applies can be “altogether
inappropriate.” Ruse’s example is this. Suppose it were true that
long hair on dogs harbors fleas, and also that dogs are goal-directed
toward survival. Ruse then thinks that Nagel is committed to saying
that a biological function of long hair on dogs is to harbor fleas.

The essence of Nagel’s response is that functional explanations
presuppose not only that a given system is goal-directed, but also
that the biological functions attributed to it actually contribute to
the maintenance of the system. So Nagel would be committed to Ruse’s
claim about fleas only if he knew that in fact the presence of fleas
provided some kind of immunity from disease or something similar.

Nagel does admit that there seems to be a problem if every effect
of a feature will have to count as one of an organism’s functions, if
such effect contributes to the maintenance of some goal or other. It
seems to me that Nagel is too pessimistic on this point. As scien-
tific disciplines develop, the range of effects considered is highly
restricted, as part of the ongoing scientific work. For example, there
is good reason in the continued development of classical mechanics
to not investigate the complicated history of most physical objects or
processes being studied, except for a highly restricted list of properties.

Moreover, this restricted list can be sharply constrained either by
direct theoretical argument for such an established theory, or by
examining current experimental work, as is done for many subtle
problems of continuum mechanics, such as the pattern of airflow
around airplane wings.

Nagel ends up adopting the goal-supporting view of functional
explanations in biology, yet, in his characteristic fashion, with some
substantive reservations. His broad conclusions at the end of the
second Dewey Lecture are these. First, when the system-property
account of goal-directed processes is sound, functional explanations
can be shown to have the same general structure as explanations in
the physical sciences. Second, such accounts of goal ascriptions are
also causal in nature. Third, functional ascriptions have a different char-
acter. They are not necessarily causal, but can also be explanations
of the effects of various features and processes. Both kinds of inqui-
ries, those about causes and those about effects, have their proper
place. Finally, none of the analysis and conclusions given show that
the laws and theories of biology are reducible to those of the physical
sciences, but do have a proper scientific status of their own.
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v

Here are some final comments of my own. First, there is one sur-
prising and important omission in the discussion of biological expla-
nations. It is the extensive use in biology of probabilistic and
statistical concepts that leads directly to the claim that a wide variety
of biological phenomena have, in the best current science, proba-
bilistic explanations based on the probabilistic nature of many bio-
logical causes. This is not a recent development, but something
that rapidly developed, at the end of the nineteenth and the begin-
ning of the twentieth century, in the work of Galton, Pearson, and
other distinguished scientists. Within this framework, many func-
tional explanations in biology are formally stated statistically. It was
a great triumph of the twentieth century to develop formal statisti-
cal tests of the correctness of such hypotheses, or even more, tests
for when to reject them. Moreover, the qualitative consideration
of probabilistic causes goes back to antiquity, and already in the
eighteenth century, Laplace’s memoir of 177419 developed system-
atic methods for inferring probabilistic causes from effects. In many
ways, for much of the twentieth century, the most formal part of
biology was its statistical side, and many statistical studies were nor-
mative in Nagel’s sense of goal-directed. This is not the place to
elaborate on these ideas, but I believe they would strengthen
Nagel’s claims about the extent to which biology is not reducible
in any coherent way to current physics and chemistry, notwithstand-
ing the great importance of physical and chemical mechanisms in
modern molecular and cell biology.

Second, there are two striking cases of the rich use of teleological
concepts in the context of the physical sciences and their engineering
applications. The first is engineering design, especially in the modern
subject of operational research and control theory, since the middle
of the twentieth century. The extensive use of physical theory would
be expected, but the surprise is the richness of the mathematical
methods that have been developed in this context to serve teleo-
logical goals. These methods, such as linear programming, and
later, nonlinear dynamic programming, have made possible quanti-
tative solutions of normative problems of optimization of engineer-
ing, economic, and social importance.

Third, the idea of robots goes back to antiquity, but it is really
in the twenty-first century that we will find them everywhere. Their
19 Pierre-Simon Laplace, “Mémoire sur la probabilité des causes par les évènemens,”
Mémoires de mathématique et de physique, presentés à l’Académie Royale des Sciences, par divers
Sçavans (often cited as Savants étrangers), vi (1774): 621–56.
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materials of construction will mostly be far from biological in nature,
but their principles of operation will be purposeful and clearly tele-
ological in nature. Indeed, certain robots will be built to model
human performance as closely as possible. Perhaps the most sophis-
ticated examples of this kind will be robots that seem to talk and
think in a serious but natural conversational style, including the
subtle expression of emotion in speech, a subject already being
studied in computer science. The modern irony of the “machine”
will be that the closest friends of humans will in many cases be their
robot companions, who can communicate so much better than
their animal friends of long tradition. In many ways, biologically con-
genial teleological concepts will invade the physical and engineering
sciences just as thoroughly as physics has invaded biology.

Fourth, the current obsession with gaining a scientific understand-
ing of consciousness will surely be resolved in the present century.
This inevitable achievement of neuroscience will then be used to
make our robots of the future ever more human. And the scientific
literature will see a welter of articles on the physics of consciousness.

Fifth, it is natural to ask how physics will have anything to say
about consciousness. The answer will come from solving another
problem of even greater general importance. This is the problem
of understanding how the brain computes in any of its main systems
tasks such as speaking or listening, coordinating accurately percep-
tion and motor control of action, or recognizing the expression of
subtle varieties of emotion, present in human interactions of all sort.

There are many reasons to think that in the next few decades we
will reach a much deeper understanding of how the brain computes,
even if we may still be baffled by how it learns to do so. The beginning
is already several decades old, starting with the still-older recogni-
tion that much biological behavior is oscillatory in nature, from
the chirping of crickets and the flashing of fire-flies, to the rhythms
of the heart and of musical instruments. The obvious physical
devices for generating oscillations are oscillators, which are used
to model an extraordinary variety of phenomena in physics from
clock pendulums to quantum fields. A widely accepted hypothesis
in current neuroscience is that collections of synchronized neurons
in the brain form electromagnetic oscillators. Roughly speaking,
there are two ways such oscillators can interact. One is by resonance,
transferring energy at a common frequency from one oscillator to
another, as in the famous Tacoma, Washington, bridge collapse
on November 7, 1940. Enormous oscillatory energy was transferred
to the bridge from the strong winds at the fundamental frequency
of the bridge’s main span. Such resonance is, among other things,



reflections 515
much too slow for brain computing. So the plausible hypothesis is
that the much faster phase-locking of oscillators is the main engine
of system computation in the brain. Little energy is required for
phase-locking, and after oscillators are synchronized in phase, no
external energy is required. Weak coupling between the oscillators
will suffice for phase-locking. I and my coworkers believe that an
important example of such phase-locking is the mechanism of fast
phase-locking for retrieving words from verbal memory in speaking
or listening, as well as in writing or reading.20 A deeper intertwining
of the mental and the physical is hard to imagine. By the time
these problems are completely solved, biology and physics may well
be indistinguishable. I believe this is an outcome that fits in well
with Nagel’s elaborate analysis of the structure of science, properly
revised from time to time to accommodate the science of today
and tomorrow.

patrick suppes
Stanford University
20 Suppes, “A Revised Agenda for Philosophy of Mind (and Brain),” in Michael
Frauchiger and Wilhelm K. Essler, eds., Representation, Evidence, and Justification: Themes
from Suppes (Frankfurt, Germany: Ontos Verlag, 2008), pp. 19–50; Suppes, Marcos
Perreau-Guimaraes, and Dik Kin Wong, “Partial Orders of Similarity Differences
Invariant between EEG-Recorded Brain and Perceptual Representations of Lan-
guage,” Neural Computation, xxi, 11 (November 2009): 3228–69; Suppes and J. Acacio
de Barros, “Quantum Mechanics and the Brain,” Quantum Interaction: Papers from
the 2007 AAAI Spring Symposium, Technical Report SS-07-08 (Menlo Park, CA: AAAI,
2007), pp. 75–82; de Barros and Suppes, “Quantum mechanics, interference, and the
brain,” Journal of Mathematical Psychology, liii, 5 (October 2009): 306–13; E. Vassilieva,
G. Pinto, de Barros, and Suppes, “Learning Pattern Recognition Through Quasi-
Synchronization of Phase Oscillators,” IEEE Transactions on Neural Networks, xxii,
1 (2011): 84–95; Suppes, de Barros, and G. Oas, “Phase-oscillator computations as
neural models of stimulus-response conditioning and response selection,” Journal of
Mathematical Psychology, lvi, 2 (April 2012): 95–117.
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WHAT KIND OF UNCERTAINTY IS THAT? USING PERSONAL
PROBABILITY FOR EXPRESSING ONE’S THINKING ABOUT

LOGICAL AND MATHEMATICAL PROPOSITIONS*

What is essential for the future development of probability consider-
ations, as for the development of science in general, is that trained
minds play upon its problems freely and that those engaged in discuss-
ing them illustrate in their own procedure the characteristic temper of
scientific inquiry—to claim no infallibility and to exempt no proposed
solution of a problem from intense criticism. Such a policy has borne
precious fruit in the past, and it is reasonable to expect that it will
continue to do so.
—Ernest Nagel, Principles of the Theory of Probability, Concluding Remarks1
Try to use probability to formalize your uncertainty about
logical or mathematical assertions. What is the challenge?

Concerning the normative theory of personal probability, in a
frank presentation titled Difficulties in the theory of personal probability,2

L. J. Savage writes,

The analysis should be careful not to prove too much; for some depar-
tures from theory are inevitable, and some even laudable. For example,
a person required to risk money on a remote digit of p would, in
order to comply fully with the theory, have to compute that digit,
though this would really be wasteful if the cost of computation were
more than the prize involved. For the postulates of the theory imply
that you should behave in accordance with the logical implication of
all that you know. Is it possible to improve the theory in this respect,
making allowance within it for the cost of thinking, or would that
*We thank Jessi Cisewski and Rafael Stern for their helpful comments with prior
drafts of this paper.

1 Ernest Nagel, Principles of the Theory of Probability (Chicago: University Press, 1939),
pp. 76–77.

2 This text is taken from a draft of Leonard J. Savage’s manuscript, Difficulties in the
theory of personal probability, dated April 1, 1967. Savage gave one of us ( JBK) this draft
while both were members of the Statistics faculty at Yale University. This text agrees
with the quotation on p. 311 of Ian Hacking, “Slightly More Realistic Personal Proba-
bility,” Philosophy of Science, xxxiv, 4 (December 1967): 311–25. In the published ver-
sion, Savage, “Difficulties in the Theory of Personal Probability,” Philosophy of Science,
xxxiv, 4 (December 1967): 305–10, this text appears (p. 308) with printing errors,
which are duplicated also in the version appearing in The Writings of Leonard Jimmie
Savage: A Memorial Selection (Washington, DC: American Statistical Association and
the Institute of Mathematical Statistics, 1981), p. 511.

0022-362X/12/0908-09/516–33 ã 2012 The Journal of Philosophy, Inc.
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entail paradox, as I am inclined to believe but unable to demon-
strate? If the remedy is not in changing the theory but rather in
the way in which we are to attempt to use it, clarification is still to
be desired.

But why does Savage assert that “a person required to risk money
on a remote digit of p would, in order to comply fully with the
theory, have to compute that digit”? His short answer is that the
postulates of the theory of personal probability “imply that you
should behave in accordance with the logical implication of all that
you know.”

In this essay we discuss three strategies for addressing Savage’s
challenge:

(1) Adapt I. J. Good’s3 idea to use a Statistican’s Stooge in order to
change the object of uncertainty for the agent. The Stooge replaces
the problematic constant p by a nonproblematic random vari-
able q that the Stooge knows is co-extensive with p. From the
perspective of the Statistician, the theory of personal probability
affords nonproblematic probability judgments about q. Viewed
from the perspective of the Stooge, the Statistician ’s nonproblem-
atic uncertainty about q expresses her/his problematic uncer-
tainty about p. But how does the Statistician understand the
random variable q so that, without violating the Total Evidence
requirement, her/his uncertainty about p is related to her/his
uncertainty about q? Total Evidence obliges the rational agent to
formulate personal probabilities relative to a space of possibility
consistent with all her/his evidence.

(2) Adapt the requirements for “what you know” to a less than logically
omniscient agent. One way to do this is to change the closure con-
ditions for what probabilistic assessments rationality demands of a
coherent agent. Hacking4 signals this idea; Garber5 and Gaifman6

provide variants of this strategy, as does de Finetti7 with his theory
of coherence, which we illustrate below in section ii. Then, consonant
with Savage’s challenge, the agent’s uncertainty about the digits of
p is no different in kind than the agent’s uncertainty about the
3 I. J. Good, “Twenty-seven Principles of Rationality (#679)” (1971), in Good Thinking:
The Foundations of Probability and Its Applications (Minneapolis: Minnesota UP, 1983),
pp. 15–19.

4 Hacking, op. cit.
5 Daniel Garber, “Old Evidence and Logical Omniscience in Bayesian Confirma-

tion Theory,” in John Earman, ed., Testing Scientific Theories (Minneapolis: Minnesota
UP, 1983), pp. 99–131.

6 Haim Gaifman, “Reasoning with Limited Resources and Assigning Probabilities
to Arithmetical Statements,” Synthese, cxl, 1/2 (May 2004): 97–119.

7 Bruno de Finetti, Theory of Probability, vol. 1 (Chichester, UK: Wiley, 1974).
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digits of any other mathematical constant. But how to formalize
the concept of possibility for such a boundedly rational agent?
What is the normative theory of probability for an agent with
bounded rationality?

(3) Modify de Finetti’s criterion of coherence, which is a dichotomous
distinction between coherent and incoherent judgments of personal
probability, to accommodate degrees of incoherence.8 Thus, as Savage’s
comment suggests, the agent’s judgment about the digits of p is
represented by an incoherent probability assessment. But the modi-
fied theory allows for reasoning with incoherent judgments and
provides the agent with guidance how to use, for example, ordinary
calculations to reduce her/his degree of incoherent uncertainty
about the digits of p.

Contemporary probability theory, in particular the mathematical
theory of personal probability, relies on a mathematical device, a
measure space <W, B, P>, which embeds mathematical and logical
structural assumptions. We begin our discussion of these three strate-
gies for addressing Savage’s challenge by relating them to the three
components of a measure space. Following de Finetti’s convention,
hereafter, we refer to the reasonable person whose uncertainty about
mathematical and logical propositions is the subject of Savage’s chal-
lenge with the pronoun, “YOU.”

The first component of a measure space, W 5 fwi : i Î Ig is a par-
tition of YOUR space of serious possibilities, indexed by a set I. The
wi are called states. This attribution as so-called “states” does not
require special metaphysical features for the elements wi of the par-
tition. These states need not be atomic in an absolute sense. Upon
further reflection of YOUR opinions, YOU might refine the space,
for example, by using a finer partition W′ 5 fw′j : j Î Jg where each
wi Í W′. YOU might need to refine W when considering, for exam-
ple, a new random quantity that is not defined with respect to W.
With respect to Savage’s challenge, the problems for YOU in formu-
lating W include, for example, that you are unsure whether YOU
have succeeded identifying a partition: YOU are unsure whether dif-
ferent elements of W are disjoint and whether their union exhausts
all the possibilities YOU judge are serious.

B is a Boolean (sigma) field of subsets of W. The elements of B
are the abstract events over which YOUR uncertainty is to be rep-
resented with a probability function. As we illustrate, below in
8 Mark J. Schervish, Teddy Seidenfeld, and Joseph B. Kadane, “Measures of Inco-
herence: How Not to Gamble If You Must, with Discussion,” In J. M. Bernardo et al.,
eds., Bayesian Statistics 7 (New York: Oxford, 2003), pp. 385–401.
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section ii, strategy (2) for responding to Savage’s challenge is to
relax the conditions that B is as large as a field of sets. That creates
some elbow room for having uncertainty about what is otherwise
incorporated as part of the mathematical background assumptions
of a measure space.

P is a (countably additive) probability over B used to represent
YOUR uncertainty. We express Savage’s challenge to YOU in rep-
resenting your uncertainty about logical/mathematical constants as
follows. In addition to the events that constitute the elements of B ,
the received theory of mathematical probability introduces a class c
of (possibly bounded) random variables X as (B -measurable) real-
valued functions from W to Â. Denote by EP[X ] the P-expected value
of the random variable X. Let IG be an indicator function for an
event G. That is,

IG(w) 5 1 if w ÎG and IG(w) 5 0 if w ÎGc.

Then EP[IG] 5 P(G). Thus, in the received theory, probability is an
instance of mathematical expectation. But in the received theory of
personal probability, p is a constant variable. It takes the same value
in each state : p(w) 5 p. So, EP[p] 5 p. YOU are required to know p.
However, under strategy (3) (as explained in section iii), in response
to Savage’s challenge YOU use an incoherent expectation function in
order to model YOUR uncertainty about mathematical propositions.

Reflect on Savage’s challenge in some detail. Let Xp6 be the vari-
able whose value is the sixth decimal digit of p. Here, we emphasize
the point that YOUR uncertainty about the decimal representation
of p may occur without having to consider a “remote” digit. In an
ordinary measure space Xp6 is the constant 2, independent of w,
because p is a constant whose value is independent of the elements
of W. In an ordinary measure space, with probability 1 the event
“Xp6 5 2” obtains, since as a mathematical result, it obtains in each
state w. Thus, in any ordinary measure space, there is no elbow
room for a nonextreme probability about Xp6 or an expectation
other than 2 for its value. Savage’s admonition applies:

For the postulates of the theory imply that you should behave in accor-
dance with the logical implication of all that you know.

The construction of an ordinary measure space requires that you
know what constant p is. That fact is part of the mathematical knowl-
edge taken as background also in order to formulate probability values
in a measure space, as we illustrate, next.

Example 1. Here is an illustration of the use of the mathematical
background knowledge for a measure space for giving probability
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values. Consider a problem in probability that relies on three familiar
bits of knowledge from high-school geometry.

The area of a circle with radius r equals pr 2.
The area of a square is the square of the length of its side.
The Pythagorean Theorem: Given a right triangle, with side lengths

a and b and hypotenuse length c, then a2 1 b2 5 c2.

Let W be the set of points interior to a circle C with radius r. A point
from W is chosen at random, with a uniform probability: equal prob-
ability for congruent subsets of C. Let B be the algebra of geometric
subsets of C generated by ruler-and-compass constructions. That is,
YOUR personal probability P is uniform over these geometric sub-
sets W: congruent regions that belong to B have equal probability.
YOU understand that YOUR probability that the random point is
contained in a region S (for a region S that is an element of B ) is
the ratio of the area(S) to the area(C). YOU are aware that YOUR
probability of the event “The random point is in S” is the fraction
area(S)/pr 2.

Let S be a square inscribed inside the circle C. (See Figure 1.)
Then by the Pythagorean Theorem and the rule for the area of a
square, area(S) 5 2r 2. So, YOU are aware that YOUR probability
that the random point is in the square S is 2/p. Suppose YOU are
aware that the first five decimal digits in the expansion of p are
3.14159. But YOU cannot identify the sixth decimal digit of p. Using
the familiar long-division algorithm, then you are unable to calcu-
late precisely YOUR personal probability (2/p) beyond the first four
digits (0.6366) that the random point is in S. YOU know that the
fifth digit is either 1 or 2. But, for instance, then YOU are unable
to answer whether a bet on the random point is in S at odds of
.63662:.36338 is favorable, fair, or unfavorable for YOU.àExample
Thus, the challenge Savage poses affects both the numerical
values that YOU can identify for YOUR (coherent) probability assess-
ments, as well as the random quantities to which YOU can assign a
Figure 1



uncertainty 521
coherent probability assessment.9 With strategy (1), next we illus-
trate how to convert this “bug” into a “feature” that opens the
door to using commonplace numerical methods as a response to
Savage’s challenge.

i. strategy (1)

We extend Example 1 to illustrate strategy (1): Loosen the grip
of the Total Evidence Principle. Use a Statistician’s Stooge to replace
the original uncertain quantity Xp6 with a different one, q, that
the Stooge knows (but YOU do not know) is coextensive with
Xp6. Then YOU may hold nonextreme but coherent probabilities
about the substitute variable q. In this way, familiar numerical
methods, including Monte Carlo methods, permit YOU to learn
about Xp6 by shifting the failure of the Total Evidence principle
to the Stooge.

Example 1 (continued). As an instance of I. J. Good’s Statistician’s
Stooge, YOUR assistant, the Stooge, creates an elementary statistical
estimation problem for the quantity 2/p using iid repeated draws
from the uniform distribution on a circle C. The Stooge chooses C
to be the circle with center at the origin (0, 0) and radius r 5 Ö2.
Then the inscribed square S has corners with coordinates (±1, ±1).
Let Xi 5 (Xi1, Xi 2) (i 5 1, …, n) be n random points drawn by the
Stooge using the uniform distribution on C. After each draw the
Stooge determines whether or not Xi Î S, that is, whether or not
both inequalities obtain: −1 £ X ij £ 11 ( j 5 1, 2), which involves
examining only the first significant digit of Xij .

Now, the Stooge tells YOU whether event Y occurs on the i th trial,
Yi 5 1, if and only if Xi Î S for a region S. But all the Stooge tells
9 Example 1 opens the door also to a discussion of higher-order probabilities. YOU
might try to assign a second-order personal probability distribution P* to the quantity
2/p in order to represent the added higher-order uncertainty you have in YOUR
first-order uncertainty P that the random point is in the region S. Higher-order proba-
bility is a topic beyond the focus of this essay. Here, we express our agreement with the
Savage-Woodbury rejoinder—Savage, The Foundations of Statistics, 2nd ed. (New York:
Dover, 1954/1972), p. 58. That rejoinder questions whether such a higher-order per-
sonal probability has operational content. The Savage-Woodbury response establishes
that P* provides YOU with a resolution of your first-order uncertainty: Use P* to
create an expected value for 2/p, just as you would use personal probability to deter-
mine an expected value for any random quantity. Then this expected value is your
first-order expected value for 2/p, and YOU have no added uncertainty about your
(first-order) probability that the random point is in S. Then there is no residual higher-
order uncertainty.

Example 1 also opens the door to upper and lower previsions that govern one-sided
gambles. We consider this in connection with de Finetti’s Fundamental Theorem of Previ-
sions, which we discuss in section ii in connection with Example 2. We indicate why
upper and lower previsions do not resolve Savage’s challenge, either.
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YOU about the region S is that it belongs to the algebra B. Then
the Yi form an iid sequence of Bernoulli(q) variables, where q is
the area(S)/2p. As it happens, q 5 2/p. But this identity is sup-
pressed in the following analysis, with which both YOU and the
Stooge concur.

YOU and the Stooge know that ∑n
i51Yi is Binomial(n ,q). Let_

Yn 5∑n
i51Yi=n denote the sample average of the Yi.

_
Yn is a sufficient

statistic for q, that is, a summary of the n draws Xi that preserves all
the relevant evidence in a coherent inference about q based on the
data of the n -many iid Bernoulli(q) draws.

The Stooge samples with n 5 1016, obtains
_
Yn 5 0.63661977236,

and carries out ordinary Bayesian reasoning with YOU about the
Binomial parameter q using YOUR “prior” for q. According to what
the Stooge tells YOU, q is an uncertain Bernoulli quantity of no spe-
cial origins. YOU tell the Stooge your “prior” opinion about q. For con-
venience, suppose that YOU use a uniform conjugate Beta(1, 1)
“prior” distribution for q, denoted here as P(q). So, the Stooge reports,
given these data, YOUR “posterior” probability is greater than .999,
that 0.63661971 £ q £ 0.63661990. Then, since the Stooge knows that
q 5 2/p, the Stooge reports for YOU that the probability is at least
.999 that the sixth digit of p is 2. Of course, in order for YOU to reach
this conclusion you have to suppress the information that S is an
inscribed square within C, rather than some arbitrary geometric
region within the algebra of ruler-and-compass constructions. The
Stooge needs this particular information, of course, in order to deter-
mine the value of each Yi .àExample

This technique, strategy (1), generalizes to include the use of
many familiar numerical methods as a response to Savage’s ques-
tion: How do YOU express uncertainty about a mathematical term
t? The numerical method provides evidence in the form of a
random variable, Y, whose value Y 5 y is determined by an experi-
ment with a well-defined likelihood function, P(Y5y | q), that
depends upon a parameter q, known to the Stooge but not to
YOU to equal the problematic quantity t. YOU express a coherent
“prior” probability for q, P(q). By Bayes’s Theorem, YOUR “pos-
terior” probability, P(q | Y5y) is proportional to the product of
this likelihood and “prior”:

P(q | Y5y) µ P(Y5y | q) P(q).

As Good notes, playing fast and loose with the Total Evidence
principle—in the example, by permitting the Stooge to suppress the
problematic information that q 5 t—allows YOU, a coherent
Bayesian statistician, to duplicate some otherwise non-Bayesian,
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Classical statistical inferences. For instance, a Classical a-level
Confidence Interval for a quantity q based on a random vari-
able X, CIalower(X ) £ q £ CIaupper(X ) becomes a Bayesian posterior
probability a for the same interval estimate of q given X, by sup-
pressing the observed value of the random variable, X 5 x, and
leaving to the Stooge the responsibility of filling in that detail.

What troubles us about this approach as a response to Savage’s
challenge is that YOUR coherent uncertainty about the substitute
parameter q may reflect very little of what YOU know about the
problematic quantity t. Employing the Stooge, as above, allows YOU
to express a coherent prior probability for q. In Example 1, q is
the ratio: area of some arbitrary rule-and-compass region chosen
(by the Stooge) from B divided by 2p, t 5 2/p, and, unknown to
YOU, q 5 t. But YOUR prior for q, when that quantity is identified
to YOU as just some region chosen by the Stooge, may have very little
in common with YOUR uncertainty about t, which depends upon
the problematic information that S is the inscribed square and
which the Stooge conveniently suppresses for YOU.

ii. strategy (2)

In this section we examine an instance of strategy (2)—modify the
closure conditions on the space of uncertain events in order to avoid
requiring YOU are logically/mathematically omniscient. Hacking
(1967) responds to Savage’s challenge this way. Here, we review
de Finetti’s (1974) theory of coherent Previsions: P(·) as an instance
of this strategy.

In de Finetti’s theory, YOU are required to offer a fair price, a
prevision P(X ), for buying and selling the random variable X. X is
defined for/by YOU with respect to a partition W. That is, for each
state w Î W, X(w) is a well-defined real number. That is, the func-
tion X:W→Â is known to YOU. (In connection with the Dutch Book
argument, de Finetti often refers to YOU as the Bookie.) To say that
P(X ) is YOUR fair price for the random quantity X means that YOU
are willing to accept all contracts of the form bX,P(X )[X − P(X )], where
an opponent (called the Gambler) chooses a real-value, bX,P(X ). This
term, bX,P(X ), is constrained in magnitude in order to conform to
YOUR wealth, but allowed to depend on both the variable X and
YOUR prevision for X. With |b| > 0 small enough to fit YOUR budget,
YOU are willing to engage in the following contracts:

when b > 0 YOU agree to pay bP(X ) in order to buy (that is, to receive)
bX in return;

when b < 0 YOU agree to accept bP(X ) in order to sell (that is, to pay)
bX in return.
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For finitely many contracts YOUR outcome is the sum of the sepa-
rate contracts.

∑n
i¼1bi [X i (w)� P (X i )]:

In de Finetti’s theory, the state space W 5 fwg is formed by taking all
the mathematical combinations of those random variables c 5 fXg
that YOU have assessed with YOUR previsions. We illustrate this tech-
nique in Example 2, below.

Definition. YOUR Previsions are collectively incoherent provided that
there is a finite combination of acceptable contracts with uniformly
negative outcome—if there exists a finite set fbig (i 51, …, n) and
e > 0 such that, for each w ÎW,

∑n
i¼1bi [Xi (w)� P (Xi )] < �e:

With this choice of fbig the Gambler has created a sure loss for
YOU—a Dutch Book. Otherwise, if no such combination fbig exists,
YOUR previsions are coherent.

Let c 5 fXj : j Î J g be an arbitrary set of variables, defined on W.
What are the requirements that coherence imposes on YOU for
giving coherent previsions to each random quantity in the set c?
That is, suppose YOU provide previsions for each of the variables
X in a set c where each variable X is defined with respect to W,
that is, the function X : W→Â is well defined for each X. When
are these a coherent set of previsions?

De Finetti’s Theorem of Coherent Previsions :10

YOUR Previsions are coherent if and only if there is a (finitely
additive) probability P(·) on W with YOUR Previsions equal to their
P-expected values.

P(X ) 5 EP[X].

This theorem yields the familiar result that, when all the variables
in c are indicator functions—when all of the initial gambles are
simple bets on events—YOUR previsions are immune to the Gambler
having a strategy for making a Book against you if and only if your
previsions are a (finitely additive) probability.
10 de Finetti, Probabilismo: Saggio critico sulla teoria della probabilità e sul valore della
scienza (Naples, Italy: Perrella, 1931), translated as “Probabilism: A Critical Essay on
the Theory of Probability and on the Value of Science,” Erkenntnis, xxi, 2/3 (Septem-
ber 1989): 169–223; and de Finetti, “La prévision: ses lois logiques, ses sources sub-
jectives,” Annales de L’Institut Henri Poincaré, vii (1937): 1–68, translated as (and with
new notes by the author) “Foresight: Its Logical Laws, Its Subjective Sources,” in
Henry E. Kyburg, Jr., and Howard E. Smokler, eds., Studies in Subjective Probability,
2nd ed. (Huntington, NY: Krieger, 1980).
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De Finetti’s theory of coherent previsions commits YOU to having
precise previsions for all variables in the linear span—for all linear
combinations—of those variables X Î c that you have already
assessed with previsions. As we explain, below, this is a different
closure condition than requiring YOU to have previsions determined
even for all events in the smallest logic/algebra generated by W.

Again, suppose YOU provide coherent previsions for all variables
X in the set c. Let Y be another variable defined with respect to W
but not necessarily in c.

Let: A 5 fX : X(w) £ Y(w) and X is in the linear span of χg
A 5 fX : X(w) ³ Y(w) and X is in the linear span of χg

Let: P(Y ) 5 supX ÎA P(X ) and P(Y ) 5 infX ÎA P(X ).

De Finetti’s Fundamental Theorem of Previsions:
Extending YOUR previsions P to P * in order to give a coherent pre-

vision for Y, P *(Y ), allows it to be any (finite) number from P(Y ) to P(Y ).
Outside this interval, the extension P * is incoherent.

Next we illustrate these two results of de Finetti and explain their
relevance to Savage’s challenge.

Example 2. Consider a roll of a six-sided die with faces numbered
in the usual way, 1, 2, 3, 4, 5, 6, and with opposite sides always sum-
ming to 7. Suppose YOU think about the following four events
(which define the set c) and identify YOUR Previsions in accord
with the assessment that the die is fair :

P (f1g) 5 1/6; P(f3,6g) 5 1/3; P(f1,2,3g) 5 P(f1,2,4g) 5 ½.

The set of events for which YOUR coherent prevision is already
determined by the previsions for these four events is given by
the Fundamental Theorem. That set does not form an algebra. Only
24 of 64 events (only 12 pairs of complementary events) have deter-
minate previsions.

For instance, by the Fundamental Theorem:

P (f6g) 5 0 < P (f6g) 5 1/3;
likewise P (f4g) 5 0 < P (f4g) 5 1/3;
however, P (f4,6g) 5 1/3.

The smallest algebra for the four events in c is the power set of
all 64 subsets of W. Thus, de Finetti’s theory of coherence does not
require that YOUR previsions are well defined for all the proposi-
tions in the elementary logic formed from YOUR beliefs about the
constituents. YOU do not have to close the set of YOUR previsions
under even sentential logical operations. For instance, YOU are not
required to provide a well-defined prevision for an event that is
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the intersection of two events each of which you have assessed with
well-defined previsions. In Example 2, YOU give determinate previ-
sions P(f3,6g) and P (f1,2,3g), but are not required by coherence
to assess P(f3g). Alas, however, this approach through de Finetti’s
Fundamental Theorem does not solve YOUR question of how to
depict uncertainty about mathematical/logical constants.àExample

Example 3. For convenience, label the four events in c: F1 5 f1g,
F2 5 f3,6g, F3 5 f1,2,3g, and F4 5 f1,2,4g. Consider the following
specific sentential proposition, H, about which we presume YOU
are unsure of its validity—until, that is, you calculate truth tables.

H : [(F2Ú[F1Ù(F4ÚF3)]) → [(F2ÚF1)Ù(F2ÚF4)]]

Analogous to the variable Xp6, the sixth decimal digit in p, the
indicator variable IH is a constant: it takes the value 1 for each state
in W. 1 5 IW £ IH. So, by the Fundamental Theorem, in order to be
coherent YOUR prevision must satisfy P(IH) 5 1. Assume that,
prior to a truth-table calculation, YOU are unsure about H. Alas,
de Finetti’s theory of coherent previsions leaves YOU no room
to express this uncertainty. The closure of coherent previsions
required by the linear span of the random variables that YOU have
coherently assessed does not match the psychological closure of your
reasoning process.

Here is the same problem viewed from another perspective.
Example 3 (continued). Garber (1983) suggests YOU consider the

sentential form of the problematic hypothesis as a way of relaxing
the structural requirements of logical omniscience.

H : [(F2Ú[F1Ù(F4ÚF3)]) → [(F2ÚF1)Ù(F2ÚF4)]]

This produces the schema:

H′: [PÚ(QÙ(RÚS))] → [(PÚQ)Ù(PÚR )]

Evidently H′ is neither a tautology nor a contradiction. So, each
value 0 £ P(H) £ 1 is a coherent prevision, provided that we have
the full set of truth-value interpretations for the sentential variables
P, Q, R , and S.àExample

The replacement of H by H ignores the underlying mathematical
relations among the variables in H. Suppose that YOU assess YOUR
prevision for H, P(H ) 5 .6. Does YOUR psychological state of uncer-
tainty about H match the requirements that coherence places on a
prevision, P(H ) 5 .6? Do YOU identify H′ as the correct variable
for what you are thinking about when you are reflecting on YOUR
uncertainty about H, before you do the calculations that reveal H
is a logical constant? We think the answer is “No.”
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The same problem recurs when, instead of imposing the norms
merely of a sentential logic, as in Garber’s suggestion, we follow
Gaifman’s (2004) intriguing proposal for reasoning with limited
resources. Gaifman offers YOU a (possibly finite) collection P of
sentences over which you express your degrees of belief. As Gaifman
indicates, in his approach sentences are the formal stand-ins for
Fregean thoughts—“senses of sentences,” as he puts it (2004, p. 102).
This allows YOU to hold different degrees of uncertainty about two
thoughts provided that they have different senses. In Gaifman’s pro-
gram, YOUR opinions about sentences in P are governed by a
restricted logic. He allows for a local algebra of sentences that are
provably equivalent in a restricted logic. Then YOUR assessments
for the elements of P might not respect logical equivalence, as
needed in order to escape the clutches of logical omniscience. Just
as with de Finetti’s rule of closure under the linear span of assessed
events, also in Gaifman’s system of a local algebra YOU are not
required to assess arbitrary well-formed subformulas of those in P.

We are unsure just how Gaifman’s approach responds to Savage’s
challenge. First, as a practical matter, we do not understand what
YOUR previsions for such sentences entail when previsions are used
as betting rates. When YOU bet on a sentence s (in a local algebra),
what are the payoffs associated with such a bet? That is, how does a
local algebra fix the payoffs when YOU bet on s with prevision P(s)? It
cannot be that the truth conditions for s determine the payoffs for
the bet. That way requires YOU to be logically omniscient if you
are coherent, of course.

Second, and more to the point of Savage’s challenge, we do not
see why YOUR uncertainty about mathematical propositions should
match the normative constraints of an algebra closed under some
finite number of iterations of a given rule of inference. Why should
YOUR uncertainty over mathematical propositions match what is
provable in a restricted local algebra of the kind sketched by Gaifman?
Might it not be that YOU recall the seventh digit of p but not the
sixth? Then, mimicking YOUR uncertainty about the digits of p with
a restricted deductive system that generates the digits of p in a proof,
according to a computation of p, will not capture YOUR uncertainty
about p.

In Levi’s terms,11 YOUR commitments to having coherent (precise)
previsions according to de Finetti’s norms of coherence do not
match YOUR performance when assessing YOUR uncertainty about
11 Isaac Levi, The Fixation of Belief and Its Undoing: Changing Beliefs Through Inquiry
(New York: Cambridge, 1991).
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mathematical propositions. Nor does YOUR performance match
the norms of a sentential logic, as per Garber’s proposal. Nor does
YOUR performance match the norms of a local algebra, as per
Gaifman’s proposal. What reason makes plausible the view that
YOUR thinking about a mathematical proposition, your actual
performance when judging the value of Xp6, matches the commit-
ments of any such normative theory? We are doubtful of strategy (2)!

iii. strategy (3)

One feature common to strategies (1) and (2) is the goal of showing
that YOU are coherent when you hold nonextreme personal proba-
bilities for mathematical propositions.

Strategy (1) allows YOU to replace a problematic mathematical
variable, for example, Xp6, one that is constant across the space of
all possibilities (W), with another random variable q that is not
problematic in the same way. Numerical methods for computing
the problematic variable, Xp6, then can be modeled as ordinary
statistical experiments generating data Y about q. There is no
incoherence when YOU use nonextreme personal probabilities
for q, given Y. But, as we saw, in addition to failure to adhere to
the Total Evidence principle, the effectiveness of strategy (1) depends
upon YOUR willingness to use your prior probability for q to express
your thinking about Xp6.

Strategy (2) allows YOU to replace the familiar algebra B of a mea-
sure space with some other mathematical structure that can support
a different set of coherent personal probability assessments—a set
that is less demanding on YOUR logical reasoning abilities. For
de Finetti, that other mathematical structure is the linear span
formed by those previsions you are willing to make. For Garber it
is the structure of a sentential logic. For Gaifman it is a local algebra.
Though each of these might capture some aspect of YOUR think-
ing about a mathematical proposition, why should YOU think
according to the norms of any one of these alternative mathemati-
cal structures? None of them is intended as a realistic psychological
theory of how YOUR mind reasons.

We propose, instead, strategy (3): Concede that, regarding uncer-
tainty about mathematical and logical propositions, despite the
phenomenological similarities with uncertainty about nonconstant
“empirical” variables, nonextreme previsions for mathematical propo-
sitions are incoherent. This is exactly what Savage points out is the
problem with the theory of Personal Probability.

That is, we concede that YOUR commitment to being coherent is not discharged
by what is an entirely predictable shortfall in YOUR performance.
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However, the problem is exacerbated by the fact that de Finetti’s dis-
tinction between coherent and incoherent previsions is dichotomous.
Perhaps a more nuanced theory of incoherence can guide incoherent
thinkers on how to reason without abandoning their commitment to
coherence? That is the core idea for strategy (3).

In several of our papers we develop a theory of degrees of incoher-
ence.12 When the Gambler can make a Book against the Bookie ’s
incoherent previsions, then many Books can be made. The dif-
ferent Books may be compared by scaling the (minimum) sure gain
to the Gambler—or equivalently scaling the minimum sure loss
to the Bookie, or adopting a Neutral index, which incorporates
both perspectives.

Here are three indices that may be used to scale the sure gains/
losses in a Book. For simplicity, in the following discussion we scale
the finite set of gambles in a Book using the sum of the individually
scaled gambles. This is a special case of our general theory.

Rate of Loss ( for the Bookie) : Scale the minimum sure loss to the Bookie
by the total amount the Bookie is compelled to wager from the
Gambler ’s strategy.

What proportion of the Bookie ’s budget can the Gambler win for sure?

Rate of Profit ( for the Gambler) : Scale the sure gain to the Gambler by the
total amount used in the Gambler ’s strategy.

What proportion of the Gambler ’s stake does the Gambler have to
escrow to win one unit for sure from the Bookie?

A Neutral Rate : Scale the sure loss to the Bookie by the combined amounts
(the total stake) wagered by both players according the Gambler ’s strategy.

As we explain in our (2003) paper, this index is better designed
than either of the first two for assessing incoherent previsions for
constants. With the Neutral Rate, if Xc(w) 5 c is a constant variable
and P(Xc) is a prevision for Xc , then the degree of incoherence for
this one prevision is |c − P(Xc)|.

Relative to each of these indices, the rate of incoherence for an
incoherent Bookie ’s previsions is the greatest (scaled) loss/gain that
the Gambler can achieve across the different strategies for making
a Book.

Example 4: Illustrating Differences among These Three Rates of Inco-
herence. Consider a 3-element state space, W 5 fw1, w2, w3g. Let
c 5 fIi: i 5 1, 2, 3g be the set of the three indicator functions for
12 For an overview, see Schervish, Seidenfeld, and Kadane, op. cit.
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the three elements of W. And let the following be three incoherent
prevision functions over c.

P1(wi) 5 P1(Ii) 5 <0.5, 0.5, 0.5>, for i 5 1, 2, 3.
P2(wi) 5 P2(Ii) 5 <0.6, 0.7, 0.2>, for i 5 1, 2, 3.

and P3(wi) 5 P3(Ii) 5 <0.6, 0.8, 0.1>, for i 5 1, 2, 3.

With prevision Pj(·), j 5 1, 2, or 3, each contract of the form
ai(Ii – Pj(wi)) is judged fair. In all three cases ( j 5 1, 2, 3), Pj(w1) 1
Pj(w2) 1 Pj(w3) 5 1.5, and not 5 1. Clearly, these are incoherent
previsions. For the first incoherent prevision, P1(·), all three rates of
incoherence lead the Gambler to the same strategy, bet against the
incoherent Bookie1 with equal stakes on all three states, ai 5 (1, 1, 1).
For the second incoherent prevision, P2(·), both the Rate of Loss
and the Neutral Rate are maximized with the Gambler using the
equal-stakes strategy, ai 5 (1, 1, 1). But the Rate of Profit against
incoherent Bookie2 is maximized with the strategy ai 5 (1, 1, 0), that
is, gamble only on the first two states, and with equal stakes. For the
third incoherent prevision, P3(·), the Rate of Loss is maximized
against Bookie3 with the Gambler ’s strategy of equal stakes on all three
states, ai 5 (1, 1, 1), whereas the other two rates of incoherence are
maximized with the other strategy ai 5 (1, 1, 0).àExample

Thus, the three rates lead the Gambler to three different combi-
nations of strategies. These are different ways to index a rate of
incoherence. Of course, each coherent prevision has a 0-rate of incoher-
ence with each index.

We first developed our ideas about rates of incoherence in order
to engage familiar debates about Bayesian versus Classical Statistical
procedures. Bayesians argue that where a particular Classical proce-
dure is incoherent, therefore it is unacceptable. But this is a coarse-
level analysis. We inquire, instead, how incoherent is the Classical
procedure. Since Classical statistical procedures are often simple
to calculate, they can be warranted in the special case when the
rate of incoherence is small and a rival, full Bayesian analysis is
computationally infeasible. We provide an illustration of this analy-
sis in our (2000), where we investigate the rate of incoherence of
fixed a-level hypothesis tests regardless of sample size.13

How do we propose to use our ideas about rates of incoher-
ence to address Savage’s challenge of how to use probabilities
to formalize uncertainty about mathematical propositions? In
the spirit of de Finetti’s Fundamental Theorem, the following result,
13 Schervish, Seidenfeld, and Kadane, “A Rate of Incoherence Applied to Fixed-
Level Testing,” Philosophy of Science, lxix, S3 (September 2000): S248–64.
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reported in section 6 of our (2003), explains how to calculate a
prevision for a new variable without increasing YOUR existing rate
of incoherence.

Assume YOU assess previsions for each element of a (finite) par-
tition p 5 fh1, … , hmg, with values P(hi) 5 pi, i 5 1, …, m. YOU
are asked for YOUR prevision P(Y ) for a (p-measurable) variable Y,
with Y(hi) 5 ci .

• Calculate a pseudo-expectation using YOUR possibly incoherent
previsions over p: P(Y ) 5 ∑i pici

• Then you will not increase YOUR Rate of Incoherence extending your
previsions to include the new one for Y, P(Y ) 5 ∑i pici

When YOU are coherent, YOUR rate of incoherence is 0. Then
pseudo-expectations are expectations, and the only way to extend
YOUR previsions for a new variable, while preserving YOUR cur-
rent 0-rate of incoherence, is to use the pseudo-expectation algo-
rithm. However, when YOU are incoherent, there are other options
for assessing P(Y ) without increasing YOUR rate of incoherence.
But, without knowing how incoherent YOU are, still YOU can safely
use the pseudo-expectation algorithm and be assured that your rate
of incoherence does not increase. The pseudo-expectation algorithm
is robust !

One intriguing case of this result arises when Y is the variable
corresponding to a called-off (conditional) gamble.14 Then using a
pseudo-expectation with respect to YOUR (possibly) incoherent
previsions for Y suggests how to extend the principle of confirma-
tional conditionalization15 to include incoherent conditional previ-
sions. When YOU hypothesize expanding your corpus of knowledge
to include the new evidence (X 5 x), YOUR possibly incoherent
previsions P(·) become P(· | X 5 x), as calculated according to
the Bayes algorithm for pseudo-expectations.

This leads to the following Corollary, which is an elementary
generalization of familiar results about the asymptotic behavior of
a coherent posterior probability function given a sequence of
identically, independently distributed (iid) variables.16
14We discuss this in section 6 of Schervish, Seidenfeld, and Kadane, “Two Measures
of Incoherence,” Technical Report #660, Department of Statistics, Carnegie Mellon
University (1997).

15 See Levi, The Enterprise of Knowledge: An Essay on Knowledge, Credal Probability, and
Chance (Cambridge: MIT, 1980).

16 See Savage, Foundations of Statistics, p. 141, Theorem 1, for the special case of
a finite parameter space, and Doob’s theorem, as reported by Schervish, Theory of
Statistics (New York, Springer-Verlag, 1995), T.7.78, p. 429, for the general version,
as used here.
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Corollary. Let Q be a finite-dimensional parameter space. Con-
sider a nonextreme, pseudo-prior density function p(q) > 0, which
may be incoherent. Suppose, however, that a pseudo-likelihood den-
sity function p(X 5 x | q) has a 0-rate of incoherence; that is, these
conditional probabilities are coherent. Suppose, also, they are dif-
ferent conditional probability functions for different values of q.
Let Xi(i 5 1, …) form a sequence of conditionally iid variables,
given q, according to p(X 5 x | q). Use the pseudo-Bayes-algorithm
to create a sequence of pseudo-posterior functions pn(q | X1, …, Xn),
n 5 1, ….

Then, almost surely with respect to the true state, q* Î Q, the
Neutral rate of incoherence for the pseudo-posterior converges to 0,
and that pseudo-posterior concentrates on q*.

Example 1 (concluded). Reconsider the version of Example 1 involv-
ing iid repeated sampling of the bivariate variable X, a point ran-
domly chosen from a circle C. S is a particular inscribed square. Let
Yi 5 1, if Xi Î S, and Yi 5 0, if Xi ÏS. Let q 5 2/p 5 P(Y51 | q).
Suppose YOU assign a smooth but incoherent pseudo-prior to q,
for example, use a Beta(1, 1) pseudo-prior. Then, given the sequence
Yn(n 5 1, …), by the Corollary, the sequence of YOUR pseudo-
posteriors, Pn(Q | Y1, …, Yn) converges (even uniformly) to 2/p. With
the Neutral Rate, if Xc(w) 5 c is a constant variable and P(Xc) is a
prevision for Xc , then the degree of incoherence for this one previ-
sion is |c – P(Xc)|. Therefore, almost surely, also the Neutral Rate
of incoherence in YOUR pseudo-posterior converges to 0.àExample

Thus, we see how to use data from familiar numerical methods,
methods that have well-defined, coherent likelihood functions—as
in the growing family of MCMC algorithms—to improve the rate
of incoherence in our previsions for mathematical propositions.

iv. summary

We have reviewed three strategies for addressing the question whether
probability theory can be used to formalize personal uncertainty about
ordinary mathematical propositions. We posed the problem in the
following form. Variable Xc is a mathematical/logical constant that
YOU are unable to identify. So, according to the theory of Personal
Probability YOUR nonextreme prevision for Xc is incoherent.

(1) Relax the Total Evidence requirement, for example, use I. J. Good’s
Statistician’s Stooge, in order to substitute a related variable q, about
which ordinary statistical inference is coherent, for the problematic
variable Xc. With the Stooge ’s help in censuring some empirical
information (for example, Xc 5 q), you can reason coherently about
q. It is the Stooge who converts those conclusions into incoherent
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previsions about Xc. But how to match q against what we are think-
ing about Xc? What exactly is our Stooge reporting to us about q?

(2) Relax the structure of a measure space in order to accommodate
a more psychologically congenial closure condition on the set
of variables to be assessed (Hacking, 1967). What fits the bill?
De Finetti’s use of the linear span in place of an algebra of events
does not work. Nor does either Garber’s proposal to use senten-
tial logic, or Gaifman’s local algebra. We do not see how to match
YOUR coherent assessments, where you are aware of these, with
a domain of propositions defined by mathematical operations.
The mathematical operations used for “closing” the domain of
propositions form a Procrustean bed against the domain of YOUR
coherent assessments.

(3) Concede that nonextreme probabilities for mathematical proposi-
tions are incoherent. Then provide normative criteria for reason-
ing with incoherent previsions in order to show how to reduce
YOUR rate of incoherence. The dichotomy between coherent/
incoherent assessments appears too coarse to explain how we
use, for example, numerical methods to improve our thinking
about mathematical quantities. With our approach to Savage’s chal-
lenge, using the machinery of rates of incoherence, we expand
an old Pragmatist idea—one that runs from Peirce through Dewey.
We illustrate how to make the operation of a numerical calcula-
tion into an experiment whose outcome may be analyzed using
familiar principles of statistical inference. Here, we have taken a
few, tentative steps in this direction.

We do not know, however, how far our approach goes in addressing
the scope of Savage’s challenge. For example, a commonplace deci-
sion for a mathematician unsure about a specific mathematical con-
jecture is how to apportion her/his efforts between searching for
a proof of the conjecture and searching for a counterexample to
the same conjecture. In sections 14.14–14.15 of his (1970), dealing
with search problems, DeGroot establishes Bayesian algorithms for
optimizing sequential search.17 Can these algorithms be adapted
to the mathematician’s decision problem by allowing for some
incoherence in her/his assessments about the conjecture? Are the
algorithms DeGroot proves optimal also with pseudo-expectations?
We take this as a worthy conjecture.

teddy seidenfeld
mark j. schervish
joseph b. kadane

Carnegie Mellon University
17Morris H. DeGroot, Optimal Statistical Decisions (New York: McGraw-Hill, 1970).
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ERNEST NAGEL AND REDUCTION*
Ernest Nagel first presented his account of theory reduction in
science in a chapter in a 1949 philosophy collection.1 That
essay grew into a longer chapter in his 1961 book, The Struc-

ture of Science, supplemented there with a discussion of emergence
and an in-depth analysis of the relations of wholes and parts.2 Finally,
in 1979, Nagel republished a 1970 essay in his collection Teleology
Revisited, responding to many of the criticisms voiced in the 1960s
and 1970s, especially that of Feyerabend, and also touching on
some issues in the autonomy of biology.3 The 1949 essay is of inter-
est as the initial formulation of what continued through 1979 to be
a largely unchanging and immensely influential analysis of reduc-
tion. The locus classicus of Nagelian reduction, however, remains
his 1961 chapter, though it is usefully supplemented with some
remarks in the 1979 chapter.

In the next few pages I summarize the Nagel reduction analysis,
and then in the following two sections comment on a variety of the
diverse responses and extensions of Nagel’s account, roughly dividing
these into the first 40 years of publications and those published in this
century. Threaded into this account is a specific thesis that ultimately
all attempts at theory reductions in science are “incomplete,” “partial,”
or “patchwork” in character. The nature and degree of the incom-
pleteness varies with the type of science, however, and in physics,
because of the “Euclidean” form of its theories, virtually “systematic”
or “sweeping” Nagelian-type reductions seem possible. It was the
prospect of these sweeping reductions that motivated the original
Nagel model of reduction and its application to thermodynamics
and statistical mechanics (hereafter, the “canonical SM example”).
However, more than sixty years of explorations and refinements of
the model strongly support a more “creeping” form of reductions,
*My thanks to James Bogen, Jeremy Butterfield, Stephan Hartmann, John Norton,
Sahotra Sarkar, Mark Wilson, Jim Woodward, and the editors of this journal for
constructive comments on various versions of this paper, as well as to the National
Science Foundation for support of my research on reduction in the sciences.

1 Ernest Nagel, “The Meaning of Reduction in the Natural Sciences,” in Robert C.
Stauffer, ed., Science and Civilization (Madison: Wisconsin UP, 1949), pp. 97–135.

2 Nagel, The Structure of Science: Problems in the Logic of Scientific Explanation (New York:
Harcourt, Brace and World, 1961).

3 Nagel, “Issues in the Logic of Reductive Explanations,” in Teleology Revisited and Other
Essays in the Philosophy and History of Science (New York: Columbia, 1979), pp. 95–117.

0022-362X/12/0908-09/534–65 ã 2012 The Journal of Philosophy, Inc.
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particularly in the biological sciences and the neurosciences. This
view, however, does not impugn the importance of such partial
reductions. Such partial reductions amount to potentially Nobel
Prize-winning accomplishments in unifying and deepening signifi-
cant areas of scientific investigation. Even in physics, though reduc-
tive expositions can give the appearance of a complete systematic
reduction, closer inspection reveals that this systematicity fails at
the margins, and even where successful the reductions often involve
modifications of both reduced and reducing theories as various
incomplete aspects of the reduction are addressed.

I add further support for the nuances of this thesis by considering
a thus-far largely ignored example of a successful and virtually sys-
tematic theory reduction, one mentioned several times as being such
by Nagel but rarely pursued in the literature. That example is the
relation between physical optics and electromagnetic theory, an
example which also clarifies several controversial aspects of reduc-
tions and indirectly illuminates the canonical SM example first intro-
duced by Nagel. A fuller exposition of the optics example than can
be included in the present paper will appear in a separate com-
panion paper.4 Finally, I conclude with an analysis of what I take
to be the main lessons from the extensive discussion of the Nagel
model, in the context of a model of partial reductions.

i. nagel’s analysis of theory reduction in science

The initial motivation behind Nagel’s analysis of reduction was the
success of nineteenth-century mechanics in absorbing and thus reduc-
ing other branches of science—whence, perhaps, Nagel’s choice of a
reduction of classical thermodynamics to statistical mechanics (SM) as
his major extended and now canonical example. Nagel was keenly
aware of the limitations of mechanics, mentioning its failure to explain
electrodynamical phenomena, but also noting that other candidates
for a universal theory have arisen. Additionally, Nagel addressed the
epistemological (and metaphysical) problem often arising from success-
ful reduction as to whether such reductions amounted to a repudiation
of everyday folk categories, such as touch, tables, and headaches (on
this, his answer was clearly “no”). From its inception, Nagel noted a
4 The companion paper will present a more complete form of the reduction in
section v, and similarly follows the Sommerfeld approach. However, the companion
paper is additionally cross-referenced to several standard contemporary texts on
optics, electromagnetic theory, and quantum electrodynamics. See my “The Expla-
nation of Optics by Electromagnetic Theory: A Virtually Nagelian Reduction,” avail-
able in draft form on my website at http://www.pitt.edu/~kfs/, and later to be
submitted for publication.
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distinction between what he termed “homogeneous” reductions, where
no novel properties were introduced, and “heterogeneous” reductions,
in which macroscopic properties like “temperature” were reduced to
mechanical quantities associated with molecules. It was the latter types
of reductions that drew most of Nagel’s attention. Though Nagel
stressed he was mainly interested in theory reduction, he often speaks
of reduction of a science or a branch of science. This seems to be
mainly an elliptical way of referring to the theories and the aggregated
experimental laws, however, though there is some discussion of the role
of auxiliary theories and borrowed laws in his 1961 chapter.

It is useful to situate the general approach of Nagelian reduction
within the general category of “explanations.” It is not possible to find
textual evidence that Nagel was specifically generalizing the Hempel-
Oppenheim Deductive-Nomological (DN) model (some call this the
“Popper-Hempel” model) since the original, 1949 publication of the
Nagel model contains no bibliographic references.5 But the 1961 ver-
sion places reduction within the context of explanation, and explana-
tion itself has four patterns according to Nagel, the first and oldest of
which is the deductive model.6 Nagel emphasized the Aristotelian
antecedents of this pattern in his chapter two. And Nagel did write in
1961 that “reduction, in the sense in which the word is here employed,
is the explanation of a theory or a set of experimental laws established
in one area of inquiry, by a theory usually though not invariably for-
mulated for some other domain” (my italics).7

The Nagelian account of theory reduction is commonly summarized
by presenting his two conditions of connectability and derivability,
as well as noting that there were additional nonformal requirements
for a successful reduction (though these often go unmentioned in the
literature). Less noted is the fact that the connectability and derivability
conditions were only developed after several other formal conditions
were presented. Nagel repeatedly asserted the first formal condition
is that the “assertions, postulates, or hypotheses of each of the sci-
ences are available in the form of explicit statements, whose meanings
are assumed to be fixed in terms of the procedures and rules of usage
appropriate to each discipline” (my italics).8 This is an “elementary”
5 Possibly what initially motivated the deductive aspect of the Nagel model was
his perceived need to accomplish “the derivation of the Boyle-Charles Law for ideal
gases from the assumptions of the kinetic theory of matter.” Nagel, “Meaning of Reduc-
tion,” p. 109.

6 Nagel, The Structure of Science, p. 21.
7 Ibid., p. 338.
8 Nagel, “Meaning of Reduction,” p. 112, and compare Nagel, The Structure of Science,

p. 345.
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sine qua non (later on I refer to this as the “condition zero” of reduc-
tions), but in discussions of reduction, with some exceptions, it has
largely been ignored as the rational reconstruction and axiomatization
of theories has gone out of philosophical fashion. And though often
pursued in physics, such explicit codification is very rare in biology.9

The approach to implementing the “explicit statements” condition in
Nagel was via classical logical empiricist theory structure, involving
theoretical and observational distinctions, as well as “coordinating
definitions (or rules of correspondence)” associating theoretical with
observational terms, but not necessarily confined to the first-order
predicate calculus. Nagel’s second formal condition was the related
point, already noted, that the terms in both reduced and reducing
sciences have codified established usage and meanings. Nagel cited
the old issue of the definability of theoretical terms in observational
language, but preferred to permit the possibility of the autonomous
“theoretical” character of terms like “temperature.” It is only within
his “third formal consideration” that Nagel introduces what he now
characterizes as “the formal requirements that must be satisfied for
the reduction of one science [sic] to another.” These are the well-
known conditions of derivability and connectability. The condition
of derivability stipulates that “the experimental laws of the secondary
[reduced] science (and if it has an adequate theory, its theory as
well) are shown to be the logical consequences of the theoretical
assumptions…of the primary [reducing] science.”10 The connectability
assumption is a corollary, in a sense, of this derivability condition,
since, as Nagel noted, if the secondary science has a term “A” not
in or simply definable in the primary science, additional “assumptions”
must be introduced to logically permit the reduction. Restating this
as “two necessary formal conditions,” Nagel wrote that:

(1) Assumptions of some kind must be introduced which postulate suit-
able relations between whatever is signified by ‘A’ and traits represented
by theoretical terms already present in the primary science. The nature
of such assumptions remains to be examined; but without prejudging
the outcome of further discussion, it will be convenient to refer to this
condition as the “condition of connectability.” (2) With the help of
9 A classic example is Hans Reichenbach, Axiomatization of the Theory of Relativity
(Berkeley: California UP, 1969). In 1937 Joseph H. Woodger axiomatized and for-
malized genetics, but this had little influence on the philosophy of biology; see his
The Axiomatic Method in Biology (Cambridge, UK: University Press, 1937). Interestingly,
I found that to analyze scientific change (not reduction), I had to axiomatize two
theories in immunology—see chapter 5 of my Discovery and Explanation in Biology
and Medicine (Chicago: University Press, 1993).

10 Nagel, The Structure of Science, p. 352.
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these additional assumptions, all the laws of the secondary science, includ-
ing those containing the term ‘A,’ must be logically derivable from the
theoretical premises and their associated coordinating definitions in
the primary discipline. Let us call this the “condition of derivability.”11

In his 1961 chapter, Nagel then turned to a discussion of the nature
of the connectability assumptions, rejecting their status as logical con-
nections but remaining fairly neutral as between thinking of them
as conventions or as factual or material statements requiring empirical
evidence for their warrant. Though in his 1979 essay he also briefly
reformulated the convention interpretation within an instrumentalist
approach, the consistently preferred theme found in his writings is
to treat the connectability assumptions as factual claims. In the
1979 essay, he also used the term “bridge laws,” which by then had
become more widely employed in the philosophical literature. And
in this later paper, he also suggested that we distinguish between
how properties or predicates are analyzed, utilizing an extensional
approach for them, and sketched how entities were to be treated.
For entities, he opined that interpreting them as identity statements
was reasonable, thus following earlier suggestions by Sklar, Causey,
and me (references below).12 Also in his 1979 article, Nagel recon-
sidered the nature of these connections in the light of a strongly
critical analysis by Feyerabend, but curiously he did not refer to the
similar and more generally influential ideas raised by Kuhn in his
Structure of Scientific Revolutions.13 Nagel strongly challenged Feyerabend
on the “incommensurability” issue, arguing that two theories could
not be inconsistent if they were incommensurable. Nagel also dis-
agreed with Feyerabend’s views that all scientific vocabulary, includ-
ing observational terms, were globally infected by the theory in which
they functioned. Nagel’s incisive criticisms are well worth reviewing
in detail for those who still subscribe to these Feyerabendian—and
Kuhnian—positions. In 1979, Nagel was also more explicit about
the implications of the use of approximations and simplifications
in logical derivations, but I will say more about this refinement in
later sections.
11 Ibid., pp. 353–54.
12 Interestingly, in his 1949 essay, “The Meaning of Reduction in the Natural Sciences,”

p. 111, Nagel refers to an “identification” of temperature and mean kinetic energy, but
places the term in quotes, and in his subsequent analysis opts for nonidentification—
see text above.

13 Paul Feyerabend, “Explanation, Reduction, and Empiricism,” in Herbert Feigl and
Grover Maxwell, eds., Scientific Explanation, Space, and Time, Minnesota Studies in the
Philosophy of Science III (Minneapolis: Minnesota UP, 1962), pp. 28–97; and Thomas
S. Kuhn, The Structure of Scientific Revolutions (Chicago: University Press, 1962).
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ii. the response to nagel’s reduction model: 1960–2000

As just noted, Nagel’s reduction model drew early and extensive criti-
cism from Feyerabend, and less directly but equally importantly from
Kuhn in 1962. The topic thus quickly became ripe for further analysis,
one account pursued by Sklar in his 1964 Princeton Ph.D. disserta-
tion and his 1967 article,14 and another by myself in my Columbia
dissertation and my 1967 essay.15 My account drew extensively on
Nagel but also on other analyses of reduction, including work by
Woodger, Quine, and Suppes, but explicitly attempted to incorpo-
rate the critiques of Popper, Feyerabend, and Kuhn into a more prag-
matic model of reduction.16 This general reduction model focused
on the derivability of a secondary or reduced theory which only had
close analogies with the original secondary theory but was a corrected
version in the reduced domain—corrected with the assistance of the
reducing theory and its associated experiments. Because close analogy
is not formally and precisely definable, some writers on reduction have
seen this modification as problematic; more about this later. In my dis-
sertation, I also applied Nagel’s analysis to optics and electromagnetic
theory, to valence theory and quantum chemistry, and to genetics
in biology. In later papers, principally in a 1977 article, I also fur-
ther generalized the model by incorporating a means for treating
the replacement of an earlier theory with a reduction of the experi-
mental domain of the previous science, as well as permitting “partial
reductions”—more on this point just below. The 1977 generalization
was both in accord with Nagel’s original model permitting reduction
of the “experimental laws” of an earlier theory which had been repu-
diated (or was inadequate), and was able to accommodate historical
examples such as phlogiston and aether theories. This tack also had
been pursued by Kemeny and Oppenheim in their alternative to
Nagel’s account.17
14 Lawrence Sklar, “Intertheoretic Reduction in the Natural Sciences,” unpub-
lished Ph.D. dissertation, Princeton University, 1964; and Sklar, “Types of Inter-
Theoretic Reduction,” British Journal for the Philosophy of Science, xviii, 2 (August 1967):
109–24.

15 In the fall of 1961, Nagel suggested to me that an analysis of reduction, taking
account of Feyerabend’s recent critique of Nagel, as well as a then-forthcoming
book by Kuhn on scientific revolutions, might be an interesting dissertation topic.
Excellent advice!

16 Kenneth F. Schaffner, “Approaches to Reduction,” Philosophy of Science, xxxiv,
2 ( June 1967): 137–47; and Schaffner, “The Logic and Methodology of Reduction
in the Physical and Biological Sciences,” unpublished Ph.D. dissertation, Columbia
University, 1967.

17 John G. Kemeny and Paul Oppenheim, “On Reduction,” Philosophical Studies, vii,
1/2 ( January–February 1956): 6–19.
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I termed this 1977 generalization the “General Reduction Replace-
ment” (GRR) model. The GRR model reintroduced the Nagel-like
connectability assumptions, generalized to include corrections as
well as direct connectability of a (revised) reducing theory TB(*) with
TR* as its condition one. The expression “TB(*)” designated the pos-
sibility of a revised reducing theory if needed to accomplish the
reduction of TR* and TR. The GRR condition two reiterated the Nagel
derivability condition using the generalized connectability assump-
tions. Given the satisfaction of these conditions, a third requirement
noted that TR* corrects TR in that TR* makes more accurate predic-
tions, or, if TR was by then considered inadequate or “false” and thus
“replaced,” that TB(*) would make more accurate predictions in the
“domain” of TR . (The domain concept will be elaborated on more
in section vi below.) Finally, the fourth condition of the GRR model
stated that TR is explained by TB(*) in the sense that TR and TR* are
strongly analogous, and TB(*) indicates why TR worked as well as it
did historically, or that TR’s domain is explained by TB(*) even when
TR is replaced.

I noted in a footnote to condition one that “the distinction between
entities and predicates will in general be clear in any given theory/
model, though from a strictly extensional point of view the distinction
collapses,” an issue we shall return to later. I also indicated that such
a GRR model has as a limiting case what I previously termed the
“general reduction paradigm” (or “model”) of 1967, which in turn
yielded Nagel’s model as a limiting case. Furthermore, the use of
the weak sense of “or” in conditions one, two, and four allowed the
“continuum” ranging from reduction as subsumption to reduction as
explanation of the experimental domain of the replaced theory, with
a “partial reduction” of some components of TR also envisaged. I wrote
that “to allow for such a continuum, TR must be construed not only as
a completely integral theory but also as a theory dissociable into indi-
vidual assumptions, and also associated with an experimental subject
area(s) or domain(s).” Examples of these replacements and partial
reductions in both medicine and physics were sketched in my 1977
essay.18 A main example there was that “portions of optical theory and
the theory’s explanations of experiments are preserved and modified
in the context of a relativistic construal of Maxwell’s electromagnetic
theory.”19 These are important topics to which I return in section vi.
18 Schaffner, “Reduction, Reductionism, Values, and Progress in the Biomedical
Sciences,” in Robert G. Colodny, ed., Logic, Laws, and Life: Some Philosophical Complica-
tions (Pittsburgh: University Press, 1977), pp. 143–72, at pp. 148–51.

19 Ibid., p. 151.
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My sketch of a modified Nagel model applied to genetics drew a series
of critiques by David Hull, who argued that Mendelian-Morganian
genetics was related to molecular genetics in a complex many-many
relation, and that the earlier theory was in effect being replaced and
not reduced by molecular genetics. I responded to these critiques,20

with those replies to Hull reprised in my book in 1993, pp. 437–45.
Other philosophers of biology joined this debate; perhaps the most
influential contribution was Kitcher’s 1984 critique of Mendelian
reduction, followed by similar arguments from Rosenberg.21 Sarkar
contributed a nuanced book on reductionism in biology, includ-
ing a critique of quantitative behavioral genetics, but was critical of
theory reduction.22 Critiques and responses to this antireductionist
analysis in genetics were formulated by Stent and Waters, as well as
myself.23 In 1973, Thomas Nickles distinguished two approaches to
reduction, suggesting that in addition to the Nagel-Schaffner type,
recovering a previous theory by taking certain quantities to limits
such as zero or infinity was another sense of reduction.24 Batterman
further developed this approach, and Butterfield more recently
addressed it in new ways.25 More formal as well as set theoretic
accounts of reduction were also developed by Stegmuller and Sneed
and by Balzer and Dawe.26

Another line of criticism of the Nagel approach developed out of
Wimsatt’s critique suggesting we consider not theories but mecha-
nisms, and in parallel out of Salmon’s shift from a statistical relevance
20 Schaffner, “Reductionism in Biology: Prospects and Problems,” in R. S. Cohen, ed.,
PSA 1974: Proceedings of the 1974 Biennial Meeting of the Philosophy of Science Association
(Dordrecht, Netherlands: Reidel, 1976), pp. 613–32.

21 Philip Kitcher, “1953 and All That: A Tale of Two Sciences,” Philosophical Review,
xciii, 3 ( July 1984): 335–73; and Alexander Rosenberg, The Structure of Biological Science
(New York: Cambridge, 1985).

22 Sahotra Sarkar, Genetics and Reductionism (New York: Cambridge, 1998).
23 Gunther S. Stent, “Promiscuous Realism,” Biology and Philosophy, ix, 4 (October 1994):

497–506; C. Kenneth Waters, “Genes Made Molecular,” Philosophy of Science, lxi,
2 ( June 1994): 163–85; and Schaffner, Discovery and Explanation in Biology and Medi-
cine, chapter 9.

24 Thomas Nickles, “Two Concepts of Intertheoretic Reduction,” this journal,
lxx, 7 (Apr. 12, 1973): 181–201.

25 Robert W. Batterman, The Devil in the Details: Asymptotic Reasoning in Explanation,
Reduction, and Emergence (New York: Oxford, 2002); and Jeremy Butterfield, “Emer-
gence, Reduction and Supervenience: A Varied Landscape,” Foundations of Physics,
xli, 6 ( June 2011): 920–59.

26 Joseph D. Sneed, The Logical Structure of Mathematical Physics (Dordrecht,
Netherlands: Reidel, 1971); Wolfgang Stegmüller, The Structure and Dynamics of
Theories (New York: Springer-Verlag, 1976); W. Balzer and C. M. Dawe, “Structure
and Comparison of Genetic Theories: (I) Classical Genetics,” British Journal for
the Philosophy of Science, xxxvii, 1 (March 1986): 55–69.
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model of explanation to a causal mechanical process approach to
explanation.27 Craver, drawing in part on Salmon, began a response,
further developed in the influential Machamer-Darden-Craver article
(MDC), which has led to the burgeoning literature on “mechanisms,”
along with side critiques on the Nagel and Nagel-like models.28 Deal-
ing with the mechanism literature and its relations to reduction would
take us beyond the scope of this article, but see my introduction to
these topics.29

One variant, or possible competitor, of the Nagel-Schaffner approach
has been termed the “New Wave” of reduction. This approach fol-
lowed on the Churchland and Hooker analyses, and was subsequently
defended by Patricia Churchland and John Bickle.30 The core modifi-
cation made in the “New Wave,” following Churchland and Hooker,
was the claim that in place of dealing with a corrected reduced theory
TR*, an “image” or restricted part of TB is constructed “completely
within the framework and vocabulary of TB” which is equivalent to
TR*.31 The “New Wave” was the subject of a searching critique by
Endicott in which he summarized the key similarities and differences
between my account and the Churchland-Hooker model.32 Endicott
concluded that the “New Wave” approach is tantamount to adopting
a replacement and not a reduction perspective (but only my 1967
article is cited and not the more developed 1977 essay). I would agree
with Endicott’s dismissal of the “New Wave” approach, and add that
though replacement would be consistent with a broadly eliminativist
theme, which has been pursued by both Churchlands in many publi-
cations, it makes no clear sense as an approach to the broader notion
of reduction. Furthermore, if a substantive close analogical relation is
27 Wesley C. Salmon, Scientific Explanation and the Causal Structure of the World
(Princeton: University Press, 1984); and William Wimsatt, “Reductive Explanation:
A Functional Account,” in Cohen, ed., PSA 1974, pp. 671–710.

28 Carl F. Craver, “Beyond Reduction: Mechanisms, Multifield Integration and the
Unity of Neuroscience,” Studies in History and Philosophy of Biological and Biomedical
Sciences, xxxvi, 2 ( June 2005): 373–95; and Craver, Explaining the Brain: Mechanisms
and the Mosaic Unity of Neuroscience (New York: Oxford, 2007).

29 Schaffner, “Reduction: The Cheshire Cat Problem and a Return to Roots,” Synthese,
cli, 3 (August 2006): 377–402.

30 John Bickle, Psychoneural Reduction: The New Wave (Cambridge: MIT, 1998); Bickle,
Philosophy and Neuroscience: A Ruthlessly Reductive Account (Boston: Kluwer, 2003); Paul
M. Churchland, Matter and Consciousness: A Contemporary Introduction to the Philosophy of
Mind (Cambridge: MIT, 1984); Patricia Smith Churchland, Neurophilosophy: Toward a
Unified Science of the Mind-Brain (Cambridge: MIT, 1986); Clifford Hooker, “Towards
a General Theory of Reduction [Parts I–III],” Dialogue, xx, 1–3 (March, June, and
September 1981): 38–59, 201–36, 496–529.

31 Bickle, Philosophy and Neuroscience, p. 17; also see Bickle, Psychoneural Reduction.
32 Ronald P. Endicott, “Collapse of the New Wave,” this journal, xcv, 2 (February 1998):

53–72.
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accepted as part of the “New Wave” analysis, then that account is
indistinguishable from my model. Endicott does not accept my
model, however, because he believes that it is still open to other
antireductionist objections, especially to the more general “multiple
realizability” problem, to which I now turn.

One recurring criticism of Nagelian kinds of reduction is the mul-
tiple realizability (MR) argument, which itself has had a number
of forms. MR has also been specifically directed against Nagelian
connectability by Hull in connection with the Schaffner variant and
by Kitcher (1984) in the more Nagelian form. But in its most general
form, the MR objection is not only directed against Nagelian-type
reductions but against reducibility in general, with special emphasis
on the reducibility of “functional” mental entities, properties, and
processes to physical ones. This at least is the path that the Fodor-
Putnam-Kim approach takes. The general intuition of MR seems to
be that cross-level relations are either impossible to state or, if state-
able, are too complex and open ended. They also destroy unity of
explanations through extensive heterogeneity, and do not have the
character of appropriate “laws” since they include “or” connectives
in them. These arguments are said to hold not just for the more
complicated biological sciences, and especially for the psychological
sciences, but also are said to apply to physical high-level properties
such as temperature, and also presumably to light (though I have
not seen any arguments on this point in the philosophical literature).

In 1999, Kim advanced an alternative to the Nagel analysis which
Kim termed a “functional model of reduction.”33 This model was
intended to overcome what Kim termed the “philosophical emptiness
of Nagel reduction” and to incorporate aspects of emergence. That
model explicitly incorporates MR to an extent, but without addi-
tional development the functional model appears to be seriously
flawed. According to Batterman’s argument, it cannot rationally
accommodate the extensive explanatory diversity its account of MR
permits.34 Further below I look at alternative ways that MR can be
incorporated within Nagel-like models.

Generally, bridge laws need not conform to a preference for
simple laws or expressions, such as are found in physics and chem-
istry; they need only work satisfactorily as part of reductions, a
point I return to in the following section. In reductions in physics, the
connectability assumptions may well turn out to be relatively simple.
33 Jaegwon Kim, “Making Sense of Emergence,” Philosophical Studies, xcv, 1/2 (August
1999): 3–36.

34 Batterman, op. cit., chapter 5.
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They are not so in biology, but this does not argue against successful
reduction, though some “boggled skeptics” may think it does. In his
incisive but often-overlooked 1999 critique of MR, Sober pointed out
that there is no clear reason to fear disjunctive laws, offering several
examples where they are quite acceptable in terms of confirmability
and utility.35 That such disjunctions can be “open ended” is for Sober
no argument about in-principle reducibility, and in point of fact,
actual cases will depend on the sciences involved. The MR thesis has,
in addition, been readdressed even more systematically in recent
years, as noted in the following section. As Sober asks: “Are we really
prepared to say that the truth and lawfulness of the higher-level gen-
eralization is inexplicable, just because the…derivation is peppered with
the word ‘or’?”36

iii. the response to nagel’s reduction model in the
twenty-first century

Given the extended and mostly negative criticism of Nagelian-type
reductions over the past four decades, only some of which is sum-
marized in the previous section, it is somewhat remarkable that the
past several years have seen a number of articles generally defending
Nagelian types of reductions.37 In particular, two very recent and
lengthy articles by prominent philosophers of science have strongly
defended this kind of reduction, essentially in its classical form.38

Both articles do make some use of arguments criticizing the critics
of Nagelian reduction that appeared in the 1990s, but assemble
those arguments and refute them with additional forceful defenses
of classical theory reduction. The first, an essay from Hartmann’s
group appearing in Erkenntnis in 2010, was provocatively entitled
35 Elliott Sober, “The Multiple Realizability Argument against Reductionism,” Phi-
losophy of Science, lxvi, 4 (December 1999): 542–64.

36 Ibid., pp. 552–53.
37 Peter Fazekas, “Reconsidering the Role of Bridge Laws in Inter-Theoretical Reduc-

tions,” Erkenntnis, lxxi, 3 (November 2009): 303–22; Colin Klein, “Reduction without
Reductionism: A Defence of Nagel on Connectability,” The Philosophical Quarterly,
lix, 234 ( January 2009): 39–53; Paul Needham, “Nagel’s Analysis of Reduction:
Comments in Defense as Well as Critique,” Studies in History and Philosophy of Modern
Physics, xli, 2 (May 2010): 163–70; Rasmus G. Winther, “Schaffner’s Model of Theory
Reduction: Critique and Reconstruction,” Philosophy of Science, lxxvi, 2 (April 2009):
119–42.

38 Foad Dizadji-Bahmani, Roman Frigg, and Stephan Hartmann, “Who’s Afraid of
Nagelian Reduction?” Erkenntnis, lxxiii, 3 (November 2010): 393–412; and Butterfield,
op. cit. Both of these articles were published with companion articles that relate to more
technical and applied examples of reduction: Dizadji-Bahmani, Frigg, and Hartmann,
“Confirmation and Reduction: A Bayesian Account,” Synthese, clxxix, 2 (March 2011):
321–38; and Butterfield, “Less Is Different: Emergence and Reduction Reconciled,”
Foundations of Physics, xli, 6 ( June 2011): 1065–135.
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“Who’s Afraid of Nagelian Reduction?” and systematically defended
what they termed the “Generalized Nagel-Schaffner Model of Reduc-
tion” or GNS. The second, Butterfield’s essay in 2011 on “Emergence,
Reduction, and Supervenience: A Varied Landscape,” had a larger
domain of analysis in its scope, but the core of that paper also notes
that the author “favour[s] the Nagel-Schaffner account” against both
the “New Wave” critics and virtually all of the published critiques of
this classical approach, which are analyzed in detail in this paper.

In this section, it will be most useful to group some of the major
points that have developed in the literature of the past five years
under the two salient headings of derivability and connectability,
using these recent articles.

The central thesis in the Nagel model of reduction was the derivability
of the reduced theory from the reducing theory, albeit with the needed
connectability assumptions. Derivability was noted by Nagel to be
“both necessary and sufficient for reduction,” inasmuch as “the condi-
tion of derivability obviously entails connectivity.”39 In his 1979 essay,
Nagel suggested that “good approximations” to explicit derivations
were satisfactory, noting Galileo’s law of falling bodies and Kepler’s
laws as reduced by Newtonian mechanics. Moreover, Nagel added,
that is “actual scientific practice,” where there are “simplifications
and approximations of various kinds” usually involved in deriving a
law from a theory. Here Nagel cited the law of the simple pendulum,
adding that this kind of derivation is a proper kind of deduction.

Nagel did not in his 1979 essay refer to my 1967 article, in which a
rigorous deduction could be made of a modified reduced law or
theoretical assumption from the reducing theory. In that article, I
acknowledged that what was deduced only bore a “close similarity”
with the original reduced theory and that “the relations between old
and corrected reduced theories should be one of strong analogy—
that is…they possess a large ‘positive analogy’.”40 As already indi-
cated, this pragmatic proposal of a “close analogy” has occasioned
strong criticism of this variant of the classical Nagel model, as well as
recent vigorous defense of the appropriateness of the “close analogy”
terminology. Some of this was mentioned above in the discussion of
the “New Wave” approach. However, a more recent objection to this
proposal is Winther’s article on my model. There, Winther correctly
identifies the “informal” “analogous” element, as in condition four
of the GRR account, but he misinterprets it as needing a formal
rendition. In practice, scientists work fairly easily with strongly
39 Nagel, The Structure of Science, p. 355n5.
40 Schaffner, “Approaches to Reduction,” p. 144.
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analogous conceptions, for example, in relating aether-based optics
and relativity, as shown in section v below. Second, Winther’s cri-
tique of the complexity of relating corrected Mendelian genes and
molecular genes had largely been previously answered by me.41

Thus, the issue of the prima facie vagueness and nongeneral char-
acter of the “strongly analogous” requirement in the various Schaffner
models has drawn frequent criticism. However this is not the case,
oddly enough, for recent strongly formally oriented philosophers of
science. Hartmann’s group, which is among the more formally directed
contributors, is quite comfortable with context-specified strong analogy
(in their analysis with the relation between corrected thermodynamics
derivable from statistical mechanics and classical thermodynamics),
and with broadly case-based determination of that requirement,
noting that “we should not expect there to be a general theory of
analogy.”42 Amplifying on this theme, Dizadji-Bahmani et al. sum-
marize then criticize the varied objections to the “close analogy”
notion, such as being too vague and arbitrary, as lacking a general
characterization of the nature of analogy, and as assuming that the
reduced theory as originally conceived has in reality been replaced
rather than reduced. This set of concerns, I noted earlier, putatively
favors the “New Wave” approach, but, as I did, Dizadji-Bahmani et al.
find them without merit. Dizadji-Bahmani et al. add, further defending
the notion of a close analogy, that TR and TR* must share “all essential
terms,” indicating that this is an important constraining requirement
that illuminates the notion of close analogy. They also reformulate the
prediction criterion of the GRR (condition three), but relax it to one
that says that TR* should “be at least equally empirically adequate as TR .”
This seems reasonable, though perhaps only a rhetorical change.43
41 See Schaffner, Discovery and Explanation in Biology and Medicine, pp. 437–87, on
connectability assumptions, including responses to Hull and Kitcher, which are not
adequately noted by Winther in his “Schaffner’s Model of Theory Reduction: Critique
and Reconstruction.” Winther does propose an additional intriguing thesis in his
paper, namely that “A reconstructed Schaffnerian model could…shed light on mathe-
matical theory development in the biological sciences and on the epistemology of
mathematical practices more generally.” Ibid., p. 119. But pursuing this notion would
take me beyond the scope of this article.

42 Dizadji-Bahmani, Frigg, and Hartmann, “Who’s Afraid of Nagelian Reduction?”
p. 409.

43 In my Discovery and Explanation in Biology and Medicine, chapter 5, I embraced
the notion of “empirical adequacy” as one of the primary criteria for theory assess-
ment. I defined empirical adequacy as “the ability of a theory to explain empirical
results, whether these be singular reports of experimental data or empirical generali-
zations such as Snell’s law in optics,” and noted furthermore that “precision gener-
ally is a species of empirical adequacy, and scope and consilience are also species of
empirical adequacy.”
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Butterfield, another philosopher of formal orientation, has also
recently commented on the issue of approximate derivability as well
as on the “close analogy” problem. He maintains that in any given
case of reasonable reduction, we can both deduce a proposition of
interest (a fact or a law) that is “approximately true; and that we can
quantify how good the approximation is.”44 Butterfield, like Dizadji-
Bahmani et al. and some of the earlier commentators whom Butterfield
cites on this point, including Nickles, writes “(a) we should not expect,
and (b) we do not need, any such general account” of close approxi-
mation or strong analogy. In addition, he adds “in reduction, TB need
only imply an approximation or ‘cousin’ of TR , corrected by the lights
of TB ,” a view which “fits well with a central claim of the companion
paper” on reduction by Butterfield, with its extensive application of
reduction, especially to limiting cases.45

Nickles as well as Wimsatt originally suggested that the contested
term “strong analogy” might find some clarification in what Batterman
later called the “physicist’s sense of reduction.”46 This is the notion that
we can recover a reduced theory by taking some quantity in the reduc-
ing theory to a limit, often 0, but sometimes ¥. Batterman developed
this idea in considerable detail in his 2002 book as well as in more
recent writings. This notion of what occurs at certain extreme limits
has also been explored in depth by Butterfield and Norton.47 As we
will see in the following application section, these various strategies
can be seen as broadly consistent with a Nagel-like approach, and
as part of the approximations and simplifications invoked as part of
the derivability claims. That said, these strategies may fit better into
a partial reduction approach rather than a strongly systematic and
fully rigorous general theory approach to reduction. More to come
on this below.

Finally, regarding the derivability condition, this approach, espe-
cially as relaxed yet still constrained as in the paragraphs above,
should not be conflated with the problems with the Hempel model
of DN explanation. Some writers appear to subscribe to this red her-
ring.48 The long debate about DN explanation, amounting to a half
century of writings by both proponents and critics, remains fertile
44 Butterfield, “Emergence, Reduction and Supervenience,” p. 939.
45 Ibid., p. 939, and Butterfield, “Less Is Different,” generally.
46 Batterman, op. cit.
47 Butterfield, “Less Is Different”; and John D. Norton, “Approximation and Idealiza-

tion: Why the Difference Matters,” Philosophy of Science, lxxix, 2 (April 2012): 207–32.
48 Craver, “Beyond Reduction”; but see my Discovery and Explanation in Biology and

Medicine, pp. 286–88, for a defense of deduction as the only recognized form of infer-
ence that is truth preserving.
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ground for discussions about explanation,49 but the theory reduction
model discussed in this section carries its own strengths and limita-
tions, best addressable in the context of reduction examples.50

Let us now turn from deducibility issues to recent discussions of
connectability assumptions. There have been several lines of criticism,
some related to Nagel-like theory reduction, and some addressing
more general concerns of reducibility, including the much-discussed
multiple realizability (MR) arguments noted in the previous section.
Recall from our first section that Nagel had struggled with the nature
of his connectability assumptions from his 1949 essay through to
his 1979 article. In general he tended to interpret these assumptions
as empirical hypotheses, though that might be conditional on the
nature of the explicit formulation chosen. Also in his 1979 paper,
Nagel favored an extensional interpretation of predicates. In 1968,
I also independently developed an extensional analysis for predicate
connections.51 By 1979, Nagel seems to have accepted the by then
almost consensus definition, defended earlier by Sklar, Causey, and
myself,52 that important entity statements were synthetic identities,
such as a light wave being identical to an electromagnetic wave.
Butterfield in his 2011 paper strongly defends co-extensions for both
entities and predicates as quite powerful and sufficient for Nagelian
types of reductions.

In contrast, however, Dizadji-Bahmani et al. argue that there is an
important difference between entity identity statements, which they
view as internal or part of the reducing theory, and bridge laws for
properties, which they contend are external to the reducing theory.
Using the canonical SM example, they write that “there is nothing
in the kinetic theory of gases per se that tells us to associate mean
kinetic energy with temperature.”53 But this internal/external dis-
tinction seems fallacious for two reasons. First, the entity identities
49 See the extensive discussion of this theme in Kitcher and Salmon, eds., Scientific
Explanation, Minnesota Studies in the Philosophy of Science XIII (Minneapolis:
Minnesota UP, 1989).

50 Jim Woodward has suggested (personal communication) that the derivability con-
dition may be necessary but not sufficient. This seems right, but the Nagelian reduc-
tion models discussed in this paper do have additional constraints, including informal
conditions that may serve as sufficiency conditions for reductive explanations.

51 Schaffner, “The Watson-Crick Model and Reductionism,” British Journal for the
Philosophy of Science, xx, 4 (December 1969): 325–48.

52 Sklar, “Intertheoretic Reduction in the Natural Sciences”; Schaffner, “Approaches
to Reduction”; and Robert Causey, The Unity of Science (Dordrecht, Netherlands:
Reidel, 1977).

53 Dizadji-Bahmani, Frigg, and Hartmann, “Who’s Afraid of Nagelian Reduction?”
p. 404.
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are not themselves part of or internal to the reducing theory, but
are added to the theory, per se, just as are the property association
laws. Second, both types of bridge laws, or more accurately connect-
ability assumptions, require empirical support of the assumptions,
and a strong case can be made that extensional equivalence for
predicate terms is the correct approach. Dizadji-Bahmani et al. differ
on this point and prefer to view the predicate relations more gener-
ally. Arguments for the former position, however, have been made by
Butterfield, and an empirical example involving optics and electro-
magnetic theory will be outlined in section v of this article.

The past year has also seen further analysis of the MR issue, quite
pointedly as a defense of Nagel-Schaffner forms of reduction. On
this discussion, see Dizadji-Bahmani et al. as well as Butterfield’s
account of MR. Both essentially agreed with Sober’s 1999 critique
discussed earlier.

iv. partial or “dappled” reductions—the background

The past 40-plus years of explication of reduction in science and
applications of reduction ranging from physics through biology
and to neuroscience have yielded a few general truths, one of which
is that actual reduction is hard to do. Serious attempts at the more
interesting inhomogeneous reductions in the special sciences, includ-
ing genetics and the cognitive neurosciences, have uncovered immense
complexity including redefinitions of fundamental concepts such as
the gene,54 and the articulation in consciousness studies of what
still appears to be a very “hard problem.”55 In physics, the situation
is considerably simpler, with much of the analysis and application in
the reduction literature still driven by Nagel’s original SM exemplar.
But even in the case of this example, deeper analysis by Feyerabend,
Sklar, Batterman, Callendar, Dizadji-Bahmani et al., and Butterfield
(involving phase transitions in SM), among others, has shown that
there are contentious issues with both connectability and derivability
relations.56 Some writers, such as Kim, have claimed that in point of
54 Peter Beurton, Raphael Falk, and Hans-Jörg Rheinberger, eds., The Concept of the
Gene in Development and Evolution: Historical and Epistemological Perspectives, Cambridge
Studies in Philosophy and Biology (New York: Cambridge, 2000).

55 David John Chalmers, The Conscious Mind: In Search of a Fundamental Theory
(New York: Oxford, 1996).

56 Craig Callender, “Reducing Thermodynamics to Statistical Mechanics: The Case of
Entropy,” this journal, xcvi, 7 ( July 1999): 348–73; Sklar, Physics and Chance: Philo-
sophical Issues in the Foundations of Statistical Mechanics (New York: Cambridge, 1995);
also see Feyerabend, op. cit.; Batterman, op. cit.; Butterfield, “Emergence, Reduction,
and Supervenience”; and Dizadji-Bahmani, Frigg, and Hartmann, “Who’s Afraid of
Nagelian Reduction?”
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fact there are no valid Nagelian reductions,57 whereas others still
hope for a systematic general reduction even in the most complex
of sciences, human consciousness.58

As a compromise between these extremes of “no reductions exist”
and fairly simple Nagel-type reductions, in 2006 I proposed that
though there are very close analogues of such systematic and sweeping
reductions in the physical sciences—one is developed in the next
section—they are quite rare and depend on special requirements,
and in the end also turn out to be partial reductions. In the bio-
logical sciences and the neurosciences, however, these attempts at
sweeping reductions, when pressed, tend to fade away like the body
of the Cheshire Cat, leaving only a smile. Those Cheshirean “smiles”
that remain are essentially fragmentary or patchy explanations, also
describable as “creeping” reductions or sometimes as “local” reduc-
tions. Elsewhere I have provided an example involving a simple
organism’s feeding behaviors.59 I will return to the analysis of partial
reduction at the close of this paper.

This idea that there still may be very close analogues of Nagelian
systemic reduction, however, suggests that we might consider in more
detail another physics example that has been mentioned by Nagel,
Sklar, and myself as meeting the (modified) Nagel conditions for
theory reduction. It is likely that the reduction literature has overly
focused on the canonical SM example, and an additional virtually
systematic reduction may well cast new light on this type of reduc-
tion. This additional example is the reduction of physical optics by
electromagnetic theory, subsequently referred to in this article as the
“optics” example. That example, which has apparently never been
extensively presented in the published literature on reduction, will
actually support many of the original Nagelian claims, if in some
cases slightly modified. But it will also show that even in this case the
reduction is ultimately, if at the margins, a family of often-approximate
reductions, most which work quite well as a systematic theory reduc-
tion, but others which fail completely for some parts of the target
domain. The take-home lesson from this example, also applicable to
the canonical SM example, is that even in physics, reductions are
ultimately partial or, in Butterfield’s term, “local,” though familially
57 Kim, “Emergence: Core Ideas and Issues,” Synthese, cli, 3 (August 2006): 547–59.
58 Patricia S. Churchland, “Commentary,” in Stephen Marcus, ed., Neuroethics:

Mapping the Field (New York: Dana Press, 2002), p. 56.
59 Schaffner, “Reduction: The Cheshire Cat Problem and a Return to Roots”; and

Schaffner, “Etiological Models in Psychiatry: Reductive and Nonreductive,” in Kenneth
S. Kendler and Josef Parnas, eds., Philosophical Issues in Psychiatry: Explanation,
Phenomenology, and Nosology (Baltimore: Johns Hopkins, 2008), pp. 48–90.
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related within a domain. Thus reductions have a “dappled” nature, to
use a felicitous term introduced by Cartwright, albeit from a strongly
pluralist and nonreductionist stance.60

v. the optics-electromagnetic theory (optics) example

A detailed and systematic account of exactly how the optics reduc-
tion example works can be conveniently and relatively succinctly
found in two back-to-back books by the distinguished physicist
Arnold Sommerfeld.61 Sommerfeld published six advanced text-
books in the 1940s covering all of physics, which were based on his
extensive lectures on the topics delivered in the 1930s. Volume III
was entitled Electrodynamics, and volume IV, Optics.62 The optics in
volume IV is developed reductionistically from Maxwell’s theory as
delineated in his volume III, and the two texts represent an in-depth
extended exemplar of an almost-sweeping classical Nagelian reduc-
tion. This explication is also written largely in the Euclidean-Newtonian
mode of entire subfields such as reflection and refraction, the optics
of moving bodies, dispersion, and diffraction being mathematically
derived from a small number of integrated universal physical laws
supplemented with relatively simple connections between the funda-
mental terms in the reduced and reducing theories.

But such a comprehensive, sweeping, deductively developable
account seems to be dependent on some rather stringent require-
ments, basically akin to Nagel’s “first” formal condition of explicit
formulation. Both reduced and reducing fields need to be repre-
sentable in terms of a relatively small number of principles or laws,
though Nagel was not committed to axiomatization in first-order
predicate calculus. In addition, for classical Nagelian-type reduc-
tions, connections between the two fields need to be straight-
forward and relatively simple, though the connections may well
be far from obvious. Both of these stringent conditions, simple
axiomatizablity and simple connectability, fail in significant ways
in more complex sciences such as molecular genetics and neuro-
science, though that they do fail, or would fail, was not necessarily
60 Nancy Cartwright, The Dappled World: A Study of the Boundaries of Science (New York:
Cambridge, 1999).

61 Other authoritative optics texts covering much of the same ground are Max
Born, Emil Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light, 7th (expanded) edition (New York:
Cambridge, 1999); and Geoffrey Brooker, Modern Classical Optics (New York:
Oxford, 2003).

62 Arnold Sommerfeld, Lectures on Theoretical Physics, vol. III, Electrodynamics
(New York: Academic, 1950); Sommerfeld, Lectures on Theoretical Physics, vol. IV,
Optics (New York: Academic, 1950).
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obvious at the beginning of the Watson-Crick era of comparatively
uncomplicated molecular biology.

That Nagel’s two conditions do fail is, however, an empirical ques-
tion and not decidable by philosophers in advance of the empirical
research. In the example I pursue in the following pages, the notion
of “simple” as a modifier of axiomatizability and connectability will
need to be altered in subtle ways, and following from those modifi-
cations the correlate of simple deducibility will also require some adap-
tation, albeit of the kind that Nagel himself accepted in his 1979
article. The example as delineated below is of necessity presented
as four compressed “fragments” of the more complete reduction of
optics by electromagnetic theory.63 As Nagel himself noted when he
first introduced the SM example in 1949, it “is not possible, without
producing a treatise on the subject, to exhibit the complete argu-
ment,” adding that he would “therefore fix my attention on a small
fragment of the complicated analysis, the derivation of the Boyle-
Charles Law for ideal gases from the assumptions of the kinetic
theory of matter.”64 Similarly, in his more expanded 1961 treatment,
Nagel noted that he would only be able to deal with “but a small
part” of this example, again just the derivation of the ideal gas
law.65 In the optics case, we happily have that “treatise” at hand, in
the two Sommerfeld volumes.

Turning back to more specific issues related to this example, in
his Optics volume Sommerfeld begins his preface noting that “[t]his
volume is closely connected with ‘Electrodynamics,’ Vol. III of my
lectures.” He adds that “Not only the formalism of Maxwell’s equa-
tions but also their intrinsic character, the invariance with respect
to the group of Lorentz transformations, is adopted from Vol. III
and is assumed to be known.”66

Sommerfeld’s first sentence expresses the recurrent theme of his
treatment of optics, which is to provide explanations of broad classes
of optical phenomena, such as reflection and refraction, the optics
of moving media and sources, dispersion, crystal optics, and diffrac-
tion, in terms of electrodynamics. Sommerfeld does so either by
beginning with Maxwell’s equations and developing the explana-
tions deductively, or by interpreting the light vector V in optical wave
theory in terms of the E, or electric force vector, but then proceeding
deductively from an older and simpler form of wave optics (a shortcut
63 See footnote 4 for a reference to a more complete account of this reduction example.
64 Nagel, “Meaning of Reduction,” p. 109.
65 Nagel, The Structure of Science, p. 343.
66 Sommerfeld, Optics, p. v.
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of sorts, but with the Maxwell equations at the ready if necessary).
(As is conventional, the bold-faced type indicates a vector quan-
tity.) But Sommerfeld’s second sentence also implicitly reveals
that the original Maxwell equations of the 1860s and ’70s, even
in their classical simplified form as rendered by Hertz in 1890, will
be modified by newer contexts and by additions to the classical
theory. Lorentz’s electron theory of the 1890s was an augmentation
and improvement of Maxwell’s theory, and the Lorentz transfor-
mations published in 1904 are not interpreted by Sommerfeld as
Lorentz originally did, but in a symmetrical Einsteinian manner.67

Furthermore, for some quantum phenomena, principally the photo-
electric effect but also some forms of radiation phenomena, the clas-
sical Maxwellian theory is only part of the “truth” and needs to be
“complemented” by quantum particle optics, as I will indicate in
more detail below.

Sommerfeld’s general reductive strategy as just summarized is evi-
dent in his treatment of the classical subdomains of optics. Here I
briefly summarize the introductory parts of Sommerfeld’s analysis
for four representative subdomains of physical optics: reflection and
refraction, diffraction, the optics of moving bodies, and the quan-
tum theory of light including the photoelectric effect.68 Generally,
Sommerfeld proceeds from the four basic equations of Maxwell in
their later (1890) simplified Hertz-like form. These equations are:
div D 5 r, div B 5 0, e0¶E/ ¶t 5 curl H, and m0¶H/ ¶t 5 − curl E,
as well as D 5 e0E and B 5 m0H. Here, E is the electric field
strength, B the magnetic field induction, D the (di)electrical dis-
placement vector, and H the magnetic field strength. The constants
e0 and m0 represent electrical and magnetic permeabilities of the
vacuum. (Readers might note that Feynman suggests that the D
and H vectors are just hidden ways of referring to what is going
on in media, and that E and B are the fundamental quantities in
Maxwell’s theory.69)
67 See Schaffner, “The Lorentz Electron Theory of Relativity,” American Journal of
Physics, xxxvii, 5 (May 1969): 498–513; and Robert Rynasiewicz, “Lorentz’s Local
Time and the Theorem of Corresponding States,” in Arthur Fine and Jarrett
Leplin, eds., PSA 1988: Proceedings of the 1988 Biennial Meeting of the Philosophy
of Science Association (East Lansing: Philosophy of Science Association, 1988),
pp. 67–74.

68 Of the coverage in classical optics texts, this mainly leaves out only the topics of
crystal optics, since polarization is treated under reflection and refraction, and inter-
ference is dealt with via diffraction. Contemporary texts add such topics as lasers and
quantum computing.

69 Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman Lec-
tures on Physics, vol. II (New York: Basic, 2010), pp. 32–34.
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In his volume on Electrodynamics, Sommerfeld derived the wave
equation for electromagnetic propagation from mathematical manipu-
lations of equations. That wave equation, in its simplified plane wave
form proceeding along the x axis in empty space and E vibrating in
the y direction, can be expressed as ¶2Ey/ ¶t2 5 e0 m0¶

2Ey/ ¶x2. Here
the constant product e0 m0 has the dimensions of an inverse velocity
squared, which can be calculated from purely electromagnetic mea-
surements and equals ∼ 3 × 108 meters per second—the velocity of
light. This is the more modern version of the famous 1862 derivation
which led Maxwell to conclude that light is an electromagnetic wave,
though in Maxwell’s original derivation this result was obtained on the
basis of a very complex electromagnetic aether model. Thus “light” is
plausibly identical with “an electromagnetic wave,” though this poten-
tial identification is as yet incomplete. This identity or connectability
assumption is only the preface to the more refined identity that then
guides the remainder of Sommerfeld’s analysis. That refined identity
is an identification of the traditional “light vector,” called V, with the
electric force vector E, and not with the magnetic force vector H (or
equivalently the magnetic induction B).

In Hertz’s experiments, recounted so brilliantly in his introduction
to his collected papers Electric Waves, Hertz supported the identifica-
tion of light with electromagnetic waves (though not yet that V 5 E).
This latter accomplishment was left to Wiener’s work in 1890,
described below, and in point of fact Hertz added an 1891 note in
his Electric Waves referring to Wiener’s “beautiful experiments.” How-
ever, the important Hertz experiments using his spark coil resonator
and detector demonstrated that the properties of electromagnetic
waves are strongly analogous and likely fully equivalent to those of
light waves. These properties included the electromagnetic waves’
reflection, interference, diffraction, and refraction.

To determine whether it is E or H that is the light vector V,
Sommerfeld writes that it is necessary to examine what occurs
when light affects a photographic plate and produces an image.
In this situation, Sommerfeld notes that “an electron is removed
from a silver bromide or chloride molecule and thereby a silver
molecule is prepared to blacken during the development of the
film. Only the electric field strength E can accomplish this.” Note
that this analysis does not explicitly appeal to a photon-electron
action or to known physiology, though Sommerfeld conjectures
that “Since, moreover, the processes occurring in the eye’s retina
are quite similar [to photography] (both phenomena are without
doubt ‘photoelectric effects’) we have good reason to give the
name ‘light vector’ to the field vector E rather than to the magnetic
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vector H.”70 This argument is more strongly and empirically sup-
ported by the elegant 1890 experiments of Weiner on the photo-
graphic process.

The gist of Weiner’s experiment involved writing the equations
for a light wave that is reflected from a silver mirror and impinges
on a photographic plate tilted at an angle. The analysis of Wiener’s
experiment (following Sommerfeld’s account) then begins from the
wave equation for the electric vector components, and obtains expres-
sions for the specific locations of the nodes and antinodes, contingent
on the additional initial conditions of the experimental apparatus.
The observations obtained by Wiener were complete confirmations
of the predicted blackening by E nodes, and Sommerfeld writes:
“Thus the electric vector E is indeed photographically active and
is to be considered the light vector. The magnetic vector is not the
light vector. Its antinodes alternate with those of the electric vector,
the first being on the surface itself.”71 These “beautiful experiments,”
to use Sommerfeld’s term echoing Hertz’s admiration for Weiner’s
experiments, indicate quite clearly how connectability assumptions
are established in reductions, and that they are synthetic empirically
based identity statements.

With the connectability established (here an identification of E
with V), Sommerfeld can then explain many of the received laws
of optics by derivations from Maxwell’s fundamental equations or
70 Quotes are from Sommerfeld, Optics, p. 56. On this point also see Brooker, who
writes regarding a choice of E or H as the light vector V that “the reason for this
choice does not lie in electromagnetism which treats E and H (or B) more or less
symmetrically, but in atomic physics: atoms are usually much more interested in the
E field of light than in the B field, because their strongest transitions are electric-
dipole transitions.” Brooker, op. cit., p. 6.

71 Sommerfeld quotations are from his Optics, p. 58; also see his p. 58 for a diagram
of Wiener’s apparatus. For the original experiment, see Otto Wiener, “Stehende
Lichtwellen und die Schwingungsrichtung polarisirten Lichtes,” Annalen der Physik
und Chemie, cclxxvi, 6 (1890): 203–43. An excellent analysis of Wiener’s paper, with
an explanation of the nature of standing waves and Wiener’s experimental appa-
ratus, is also online at the blog: http://skullsinthestars.com/2008/05/04/classic-
science-paper-otto-wieners-experiment-1890/ (accessed March 23, 2012) run by the
pseudonym Dr. SkySkull, an associate professor of physics. Wiener’s experiment
was also discussed by Pierre Duhem as the first motivating experiment supporting
the famous D-thesis, later usually called the “Quine-Duhem thesis.” But Duhem’s
discussion of Wiener was seriously limited, commenting only on the aspects of the
Wiener experiment that affected the Neumann polarization theory, and not on
Maxwell’s theory; see pp. 184–86 of Pierre Duhem, The Aim and Structure of Physical
Theory (Princeton: University Press, 1954), translated by P. P. Wiener from the second
French edition published in 1914. Duhem was notoriously critical of Maxwell, which
may account for Maxwell being ignored. A fuller treatment of this issue regarding
Duhem, Wiener, and Maxwell can be found in my companion paper mentioned in
footnote 4 above.
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from equations that represent E waves.72 H is not disregarded, how-
ever, since specifying needed boundary conditions for many of the
derivations also requires knowledge or postulation of the values of
both E and H at interfaces (in reflection and refraction) or apertures
(in diffraction).

The first laws Sommerfeld obtains are the laws of reflection and
refraction (Snell’s law). These are derived using premises for the
E wave equation incident at angle a, proceeding at angle b in the
refracted media, and the boundary conditions at the interface of a
plane surface with two different dielectric (e) and magnetic constants
(m) (for example, air1 and water2). Sommerfeld writes Snell’s law
based on his derivation as:

sin a/sin b 5 Öe2m2 / Öe1m1 5 n12

where n is the relative index of refraction (here between air and water).
This derivation is exact, but that prediction for actual substances

is incorrect because of complications such as infrared resonance
vibrations and the fact that Maxwell’s theory in its original, simpler
form does not account for dispersion (though it can be extended to
do so as in Sommerfeld’s chapter III).73

Sommerfeld next turns to derivations of Fresnel’s famous sine
and tangent laws for the ratio of the relative amplitudes of incident,
reflected, and refracted polarized light. In this case he obtains a
somewhat more complicated (more general) form of the ratios which
upon simplification yield Fresnel’s famous sine expression for the
intensities of reflected and refracted light waves where the electric
vector is perpendicular to the plane of incidence. He also derived
another expression for Fresnel’s tangent law.74 Thus both of the Fresnel
intensity laws are actually simplifications and involve approximations,
in comparison with the more complex and rigorous results derivable
using Maxwell’s equations.75
72 I should add here that this order of presentation is not exactly Sommerfeld’s, who
has to wait until he has clarified the nature of V (he eventually does this on pp. 56–57
of his Optics), but he proceeds to explain reflection and refraction beginning on p. 6,
albeit focusing on the amplitude of the E fields.

73 Reflection and refraction laws are derived using the wave equations, not the sim-
plified ray diagrams sometimes employed. Brooker cautions us to always think in terms
of waves, with rays as normals to the wave fronts, but also adds that ray diagrams are
much better (far less cluttered) for graphical representations. Brooker, op. cit., p. 12.

74 These Fresnel ratios have played an important role in structural realism discus-
sions in philosophy of science—see John Worrall, “Structural Realism: The Best of
Both Worlds?” Dialectica, xliii, 1–2 ( June 1989): 99–124.

75 See Julius Stratton, Electromagnetic Theory (New York: McGraw-Hill, 1941),
pp. 492–94. Also compare John D. Jackson, Classical Electrodynamics, 3rd ed. (New York:
Wiley, 1999), pp. 302–06.
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Similar, though considerably more mathematically complex, approxi-
mations are introduced in my second “fragment” of Sommerfeld’s
optics, this one on diffraction or the bending of light waves around
an obstacle including a straight edge. The general point which
Sommerfeld makes is that, as in refraction results, most of the cal-
culations of diffraction results involve approximations and simplifi-
cations, in contrast to a rigorous and complete derivation.

The topic of diffraction in optics and more rigorous treatments
of diffraction have been the subject of analysis in advanced electro-
magnetic theory texts, and have also received recent attention in
the philosophy of science literature by Saatsi and Vickers.76 Suffice
it to say, however, that the Sommerfeld approach described briefly
above, which is essentially equivalent to the Kirchhoff 1883 optical
approach, is explained and can be further corrected by the more rig-
orous electromagnetic analysis based on Maxwell’s equations, including
extending the analysis to vector (not only scalar) representations,
as well as using Fourier analysis to represent the multiple frequency
light waves encountered in practice. However these rigorous solu-
tions are quite limited, requiring special conditions and special mathe-
matics (for details especially see Sommerfeld’s Optics, section 38)—
restrictions that indicate the limited direct application of Maxwell’s
fundamental equation, somewhat along the lines of Cartwright’s views
on this topic.77

Here are three salient examples from diffraction theory, the first
two dealing with connectability problems and the third with a deriva-
tional issue. First, there are certain properties, such as the traditional
black or opaque screen found in optics, which cannot even be defined
in Maxwellian theory, though one can work around this issue for
most experimental cases.78

A second connectability issue arises in attempts to solve a diffrac-
tion problem exactly using Maxwell’s equations. In general, the dif-
fracting object needs to satisfy “Maxwell’s equations both outside
and inside the…object” as well as “the proper boundary conditions
on the surface of that object.”79 But these requirements are not
physically realizable for light in the case of the famous circular disk
and “Poisson’s spot,” analyzed earlier in optics by Fresnel, Poisson,
and Arago. Finally, third, Sommerfeld expresses frustration about
76 Juha Saatsi and Peter Vickers, “Miraculous Success? Inconsistency and Untruth
in Kirchhoff ’s Diffraction Theory,” British Journal for the Philosophy of Science, lxii,
1 (March 2011): 29–46, at p. 35.

77 Cartwright, How the Laws of Physics Lie (New York: Oxford, 1983).
78 Sommerfeld, Optics, p. 205.
79 Ibid., p. 247.
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applying Maxwell’s theory to the classical problem of the rainbow’s
colors and structure, writing that the sophisticated spherical har-
monic series and specialized Bessel functions needed here “con-
verge so slowly that they become practically useless.”80 This example
indicates the limitations of the derivational application of Maxwell’s
theory to a phenomenon clearly in the domain of optics but not
solved adequately by any theory of optics up to that time. Thus what
we have in virtually all these diffraction examples are at best approxi-
mations and perhaps more correctly close analogues of experimental
results that are not rigorously derivable from the reducing theory.

For other examples of attempts at more modern rigorous accounts
see Brooker and Jackson, and also Saatsi and Vicker’s discussion, the
latter with applications to the issue of scientific realism.81 These ana-
lyses indicate that something quite like the Schaffner reduction correc-
tion, also involving close analogy, is present in this example. In point
of fact, Brooker’s analysis using Maxwell’s equations clarifies why the
widely accepted diffraction analysis of Kirchhoff “worked as well as it
did historically” (to recite condition four of the Schaffner GRR model
above). Brooker’s detailed reasons can be found in his text, and he
includes a reference to a Fourier analysis of the differences between
the Kirchhoff-derived (call it “TR”) and Maxwell-derived (here “TR*”)
treatments of diffraction. Brooker concludes that the comparison indi-
cates “there are good reasons why we can get away with using Kirchhoff
boundary conditions at a diffracting aperture.”82

To introduce our third example from optics, chapter II of
Sommerfeld’s optics text analyzes the optics of moving media, includ-
ing the velocity of light, aberration, Fresnel’s “partial drag,” and the
famous Michelson-Morley experiment’s attempt to detect the “aether
wind.” These latter two examples, Fresnel’s partial-drag expres-
sion and Lorentz on the Michelson-Morley experiment, show (here
kinematically and not dynamically) how a reducing theory can explain
both experimental results obtained under earlier theories and why
those theories worked as well as they did, but by discarding some
key aspects of those theories (the aether) and correcting and reinterpreting
those key results.

Our fourth and final optics example relies on the concluding
section of Sommerfeld’s optics of moving media chapter, this titled
“The Quantum Theory of Light.” There Sommerfeld begins from
80 Ibid., p. 248.
81 Brooker, op. cit.; Jackson, op. cit. Especially see Brooker, pp. 70–72, and Saatsi and

Vickers, op. cit.
82 Brooker, op. cit., p. 72.
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what he terms Einstein’s “radical” 1905 paper on the photoelectric
effect, experimentally discovered by Hertz in 1897. Sommerfeld
notes this involves “a new elementary particle, the photon, that is a
return in a sense to the older Newtonian corpuscular theory of
light.” This is, he adds, “an extremely remarkable situation” “from
an epistemological point of view.”83 Though some phenomena can
be treated from either the wave or particle perspective, “the photon
theory, at least in its present state of development is unable to
account precisely for polarization and interference phenomena.
Therefore we are forced to adopt a dualistic conception of light: not Huygens
or Newton, but Huygens and Newton.”84 Sommerfeld, however, then
refers to Bohr’s notion of complementarity, which he sees as a better
characterization of light than duality. In introducing the photo-
electric effect, Sommerfeld explicitly recognizes the limitations of
the traditional Maxwellian-Lorentzian components, and even the
Einsteinian relativistic components, of traditional optics. This under-
scores the patchiness or incompleteness of this reduction, albeit per-
haps more at its margins, and even though the Maxwellian theory
continues to serve as the basis of the explanation of broad domains
of optics.

Above, I have briefly summarized how Sommerfeld proceeds by
deduction, approximation, and simplified shortcuts using equations
from wave optics. Though the Sommerfeld account of optics, largely
based on classical and relativistic electromagnetic theory, holds in
the main, and by allowing approximations of various sorts covers
broad domains of optics exceedingly well, it clearly fails at the mar-
gins. This is the case especially in connection with the photoelectric
effect, and often at places closer to the core, as in the case of the
black-screen and circular-disk examples. The account above, thus,
carries with it a deeper lesson—all reductions, even relatively “simple”
paradigm reductions in physics, are most likely partial and thus not
fully systematic.85 That point of view and how to analyze it in more
general terms will be taken up in our last section below.
83 Sommerfeld, Optics, p. 87.
84 Sommerfeld still believed this was the case in 1949, based on the Preface date of

his Optics book. Why Sommerfeld did not acknowledge the power of quantum electro-
dynamics in the Dirac and later forms is an interesting historical question that will be
addressed in my companion paper; see note 4, also note 90 below.

85 It is of interest that Butterfield also seems to agree with this view when he writes,
“there is surely no single best sense of ‘reduction’.” And if nondisjunctiveness is
required, that will “unquestionably make for reductions narrower in scope. What really
matters, scientifically and philosophically, is to assess, in any given scientific field,
just which reductions hold good, and how narrow they in fact turn out to be.” Butterfield,
“Emergence, Reduction and Supervenience,” p. 942.
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vi. the conditions for a partial reduction

To further clarify this notion of a partial reduction, which is the prima
facie case even in the putatively systematic optics example outlined
above, let us consider how the conditions for such a type of reduction
might be formulated. The general conclusion (and guiding intuition)
of this section is that the GRR model can function not only as a
touchstone of systematic reduction, but can also be an appropriate
framework for specifying where such systematic reductions fail, and
thus become partial reductions.

Now a partial or incomplete reduction might be “partial” in several
somewhat different senses, with a “core” sense indicating the reduc-
tion is incomplete in some important respect. Even when its reduc-
tions are “partial,” however, they may still reduce extensive topic
areas. Recall that Nagel sometimes equivocated whether his analysis
of reduction was focused on theories only, or whether in some case the
elements within the reduction relation might be sciences or branches
of a science. In the brief remarks that follow, I address both foci:
theories and science, conceiving of the latter as a combination of the
theories, the observational generalizations, and phenomena in that
“domain” (more on this below).86

Raising the question whether an intertheoretic reduction is partial
or incomplete presumes that a theory can be distinguished into com-
ponent parts. This assumes some explicit codification, much as
Nagel did with his “first” formal condition. Recall Nagel’s requirement
that the “assertions, postulates, or hypotheses of each of the sciences
are available in the form of explicit statements, whose meanings are
assumed to be fixed in terms of the procedures and rules of usage
appropriate to each discipline.” Making such postulates “explicit” will
often need to be achieved by the scientific peers in the subject domain,
as Hertz did for Maxwell’s theory, though philosophers with a taste
for rational reconstruction and axiomatization could fulfill this role.

Physics, like mathematics, has historically been able to articulate
theories based on a small number of related hypotheses that have
extraordinary scope of application. We saw this in the example of
Maxwellian electrodynamics in the previous section, but also encounter
it in classical mechanics, thermodynamics, and quantum mechanics.
The bottom line, then, is that there will be a somewhat different
86 Here and further below the term “phenomena” is used in the Bogen and Woodward
sense; see James Bogen and James Woodward, “Saving the Phenomena,” Philosophical
Review, xcvii, 3 ( July 1988): 303–52. I leave open the interesting question whether
special instruments, such as the Michelson interferometer, should also be included
in the “domain,” as Kuhn included them in his expansive notion of “paradigm.”
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flavor to the nature of the “partial” character of reductions in terms
of scope and approach in different sciences. Much of the analysis in
this section is oriented toward partial reductions in physics. Several
other publications of mine and others treat reductions in biology,
where causal mechanical temporal models are analyzed.87

Because of the neater and often-axiomatized theory structures
found in physics, there we also often have the possibility of iden-
tifying a specific core component hypothesis of a putative reduced
theory that has failed to be explained by the reducing theory. Three
types of such reductive failures suggest themselves. First, we may con-
sider those situations in which a core hypothesis (including what
may be termed a “law”) in the potentially reduced theory is not deriv-
able, in spite of general success in deriving other core assumptions
and results of the reduced theory. Examples were discussed in the
optics example and included the photoelectric effect, the photon,
and quantum results more generally. Relatedly, in the canonical
SM example, failure to adequately derive the second law of thermo-
dynamics has generated considerable discussion.88 A second type of
failure of a reduction would be the inability to derive key experi-
mental results (phenomena) that are part of the putatively reduced
theory’s standard and successful applications. We encountered these
in several diffraction examples in the optics case, such as the circular
disk and the black screen, where we noted these were at best weaker
analogous derivations. Third, there are experimental phenomena
that fall under the “domain” of the reduced theory, which even
the reduced theory does not adequately explain, such as the photo-
electric effect and the rainbow, but which constrain the adequacy
of the putative reducing theory.

In the optics area analyzed above, Sommerfeld employed as his
main reducing theory earlier versions of Maxwell’s electromagnetic
theory as reformulated by Hertz, but as added to by Lorentz, who
introduced electrons and a force law, as well as the famous Lorentz
contraction and the Lorentz transformations. Additionally, Lorentz’s
interpretation of the “contraction” and his asymmetric characteriza-
tion of the transformations were significantly recast in Einstein’s
special theory of relativity, which Sommerfeld also accepted as part
of his main reducing theory. What we seem to have here, then, is a
87 The background to different approaches to reductions in physics and biology is
developed in chapter 9 of my Discovery and Explanation in Biology and Medicine, with
more detail on reductions in biology presented in my “Reduction: The Cheshire
Cat Problem and a Return to Roots.”

88 See references in footnote 56 above.
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series of reducing theories, with each of the later ones absorbing
major parts of the previous theory, but not all of the previous
reducing theory. Starkly put, the aethers of Fresnel, Kirchhoff,
Maxwell, and Lorentz are rejected and replaced by relativistically
invariant Maxwellian fields in the Einsteinian theory. Thus, there
arises the need to provisionally fix the form (and the time period)
of the reducing theory before using it to explain (or determining
a failure to explain) the reduced theory—or parts of the reduced
theory. In Sommerfeld’s case, the reducing theory was the main-
stream electrodynamics of 1935–1945. This introduces an important
diachronic feature into reductions, but it can be handled by specifying
which form or codification of the reducing theory is being utilized,
as just noted. That said, one of the limitations (that is, partial failure)
of the reduction at any given time period may subsequently be
removed, and an incomplete feature of the putative reduction
repaired, if and when a new, more powerful successive theory is
developed and applied to the reduced domains. This was the case
for light quanta, achieved by Dirac’s theory of quantum electro-
dynamics, but only as later augmented by Feynman, Dyson, and
Schwinger in the late 1940s.89,90

As briefly noted in section iii, the notion of the possibility of
a “partial” reduction also arose earlier in the summary of the GRR
approach in terms of a continuum of reduction relations in which TB

(or TB*) can participate in reducing TR and TR*. To allow for such
a continuum, TR needed to be construed not only as a completely
integral theory but also as a theory dissociable into weaker versions
of the theory, and also appropriately associated with an experimental
subject area(s) or domain(s). This consideration suggests that we
might appeal in some manner to the GRR to further specify and sys-
tematize our notion of a partial or incomplete reduction.
89 In Discovery and Explanation in Biology and Medicine, chapter 5, I outlined the
structure of diachronic change of the immune response theories, which I termed
temporally “extended theories.” There I appealed to several levels of abstraction, in
which there was constancy at high abstraction levels and changes of more specified
assumptions at lower abstraction levels. I have not attempted to apply this tack
to electrodynamics in the present paper, but I do so in my companion article; see
footnote 4.

90 It is as yet unclear to me why Sommerfeld never referred to Dirac’s (or any
other form of) quantum electrodynamics. Possibly this is because that theory was
in considerable trouble by the mid-1930s, and did not resolve the difficulties of
various key quantities becoming infinite until renormalization was introduced in
the late 1940s and 1950s. See Julian Schwinger’s preface for an account of these
developments in his Selected Papers on Quantum Electrodynamics (New York: Dover,
1958). I hope to resolve this in my companion article; see footnote 4.
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As a general model, then, I suggest that we conceive of partial reductions
as largely completed reductions containing exceptions or failures of attempted
reductions. I now frame this within the previously discussed GRR
model, viewed as a touchstone for characterizing successful reductions
but here extended to also cover partial theory replacements. The
notion of “partial failure” used here indicates that such a failure is
comparatively minor in comparison with the reductive success in most
areas of the reduction. A metrical analysis of this “comparatively
minor” aspect of failure is not feasible, at least at this point, though
generally a review of standard texts and review articles in the sub-
ject areas of actual scientific reductions will indicate the nature,
scope, and significance of any incompleteness in the reduction. (As
pointers to such incompleteness and reductive failures, look for strong
disagreements—Kuhnian “crises”—over “anomalies,” including anxi-
eties over specific concepts, laws, and key experiments.) In the light
of the discussed need for codifiability, however, to be added to those
four GRR conditions of connectability and derivability, correction,
and strong analogy, is a requirement for such a codification. This
we might term a “condition zero” that reformulates what Nagel in
his 1961 account called his “first formal” condition, requiring that
those structures involved in a reduction relation be made explicit.
This might read:

(0) The set of theory(ies)fT g and/or the (branches of ) science, com-
prised of fT g and fOg (experimental results and generalizations) and
fDg (domain phenomena) is sufficiently codified (but not necessarily
axiomatized) that there are effective procedures for reaching a deter-
mination whether the following four GRR conditions for a successful
reduction hold, or whether their partial failure in the case of partial
reductions is found.

From this perspective, partial reductions occur in the context of
almost-complete reductions if and only if one or both of the gener-
alized conditions of connectability (condition one) and derivability
(condition two) of the GRR model partially fail, or if the correc-
tions and close-analogy conditions (conditions three and four)
partially fail. An example of the condition of generalized connect-
ability failing occurred with the photon concept and the experimental
photoelectric effect for Maxwell’s theory, even when supplemented
with Lorentz’s electrons and interpreted relativistically. Thus, there
the reduction is partial, in spite of the fact that most of optics is
reduced by the modified Maxwell theory. Other partly experimental
examples were types of diffraction failures, as in the nonconnectability
(definability) of a black screen and the physical unrealizability of
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an infinitely thin but opaque circular disk in Maxwell’s theory
applied to optics. Should the condition of generalized derivability
fail (recalling that the sense of “derivation” here does allow for
approximations and close analogies between TR* and the older TR),
then the reduction is also partial. This may occur, in spite of puta-
tively adequate connectability assumptions holding, when the mathe-
matical derivations are (at present) unsatisfactory, such as in cases
where mathematical series of spherical harmonic and Bessel func-
tions will not converge in diffraction examples. Relatedly, the recal-
citrant rainbow example is also a derivational failure of Maxwellian
reduction, but here in the experimental “domain” of optics and not in
a reduced theory.

I believe that this set of considerations captures what we tend to
find in most instances of reduction in the sciences, and that it repre-
sents what we encountered in the optics example as well. The optics
case was and still is a most important sweeping kind of reduction,
similar to the sweep of the SM example, though it is a partial
reduction at the margins, absent an extension of the reducing
theory to encompass quantum electrodynamics (and still remain the
“same” reducing theory).

vii. summary and conclusion

In this article I have reviewed Ernest Nagel’s three important essays
that delineated the Nagel model of theory reduction, then examined
many of the amplifications and revisions of kindred models of
reduction. The account takes place over a time span of over sixty
years, since Nagel’s first article appeared in 1949. I argued that
though some classically sweeping Nagelian reductions putatively
can be found in physics, a closer inspection of one in-depth case
of optics and electromagnetic theory indicates that in spite of its
stunning successes, this reduction fails at the margins and perhaps
even more centrally (for quantum phenomena). Even where reason-
ably successful, that reduction depends on approximations and in
some cases on “work arounds” in order to accomplish its explana-
tions. Though space restrictions prohibit a similar consideration
of the canonical Nagelian thermodynamics-statistical mechanics
example, it is likely that similar failures can be identified in that
example. The optics example also indicates that closer attention
should be paid to the specific temporal form of an evolving set of
reducing theories, and the question when a theory change is suffi-
cient to say that it is a “different theory” merits further attention.
Many of these reductive themes were situated in the framework
of the Nagel-like general reduction replacement (GRR) model;
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however, many of these themes also indicate important nonformal
and pragmatic aspects of what occurs in real scientific examples.

As the review above indicates, the Nagel model is still going strong,
in spite of a vast array of critical analysis directed at it, and can play
an important role in an explication of partial reductions. But though
strong and still extensively discussed and applied, the Nagel model
now appears in a more conditionalized and nuanced pragmatic
context, one that reflects the more complex and “dappled” analyses
of science and scientific change than could have been anticipated
in the middle of the twentieth century. But the Nagel model and
its variants have weathered the philosophical and scientific criti-
cism, are alive and well, and seem very likely to continue to generate
philosophical arguments and counter-arguments for many years
to come.

kenneth f. schaffner
University of Pittsburgh
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